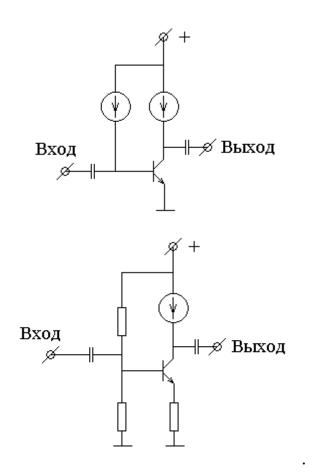

Негодные транзисторные схемы (продолжение).

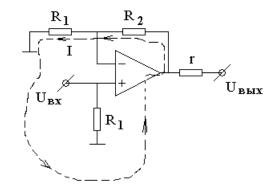

Двухкаскадный усилитель:

Дифференциальный усилитель:

Повторитель с нулевым смещением:

Усилитель переменного тока с большим коэффициентом усиления:

Операционный усилитель.


Операционный усилитель — микросхема, которая усиливает во много раз, например в миллион, разность напряжений на двух входах.

 $U_{\it gbix} = \alpha \cdot (U_+ - U_-),$ где $\alpha \approx 10^6$ — коэффициент усиления по напряжению.

Обычно ОУ имеет двухполярное питание. На одну ногу микросхемы подают +12 Вольт, на другую — -12 Вольт.

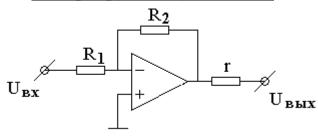
В операционном усилителе обычно вводят отрицательную обратную связь.

Неинвертирующий усилитель.

В качестве примера рассмотрим усилитель напряжения на операционном усилителе. Входной сигнал подадим на плюс вход ОУ. Минус вход через сопротивление R_1 соединим с общим проводом схемы. Выход ОУ через сопротивление R_2 соединим с минус входом.

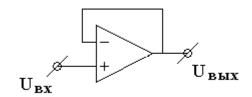
Для анализа работы любой схемы с операционным усилителем достаточно воспользоваться двумя правилами.

- 1). Входные токи ОУ пренебрежимо малы: $I_+ \approx I_- \approx 0$.
- 2). При нормальной работе ОУ напряжения на двух входах практически равны: $U_+ \approx U_-$.

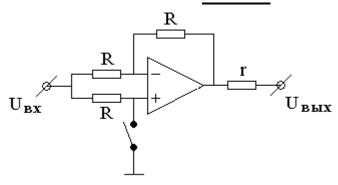

Проведем анализ предложенной схемы.

$$U_{+}=U_{ex}$$
 => $U_{-}=U_{ex}$ =>
$$I=\frac{U_{-}}{R_{1}}=\frac{U_{ex}}{R_{1}}$$
 — сила тока по цепи R_{2} , R_{1} .

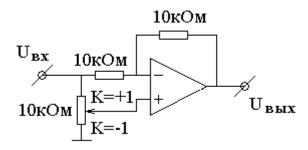
$$U_{\mathrm{BblX}} = I\Big(R_1 + R_2\Big) = \frac{R_1 + R_2}{R_1} U_{\mathrm{BX}} \qquad \Longrightarrow \qquad U_{\mathrm{BblX}} = \left(1 + \frac{R_2}{R_1}\right) U_{\mathrm{BX}}$$


Дежурный импортный операционный усилитель — TL071. Цена одного операционного усилителя чуть больше цены разового проезда в метро.

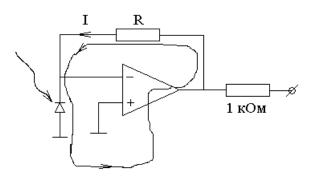
Инвертирующий усилитель.



$$K_U \equiv \frac{U_{\text{BblX}}}{U_{\text{ex}}} = -\frac{R_2}{R_1}$$


Повторитель.

Переключатель $K_U = \pm 1$.

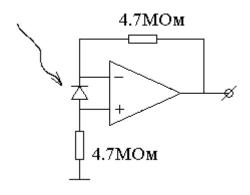


Регулятор коэффициента передачи в пределах от -1 до +1.

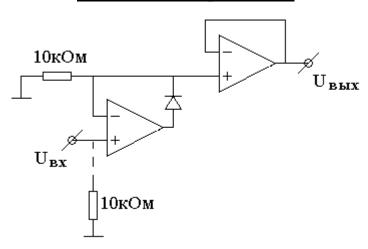
Преобразователь фототок — напряжение.

Проанализируем работу типовой схемы включения фотодиода:

Под действием света в фотодиоде возникает фототок пропорциональный мощности света. Этот ток не может протекать через "-" вход операционного усилителя. Следовательно, весь фототок протекает через резистор обратной связи сопротивлением R. Типовое значение сопротивления R=1MOM.

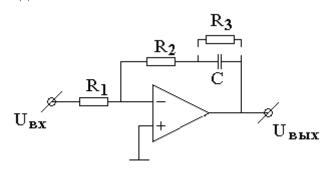

Плюс-вход ОУ соединен с общим проводом схемы, поэтому $U_+=0$. Из условия $U_-=U_+$ следует, что и на минус-входе ОУ напряжение тоже близко к нулю $U_-=0$.

В таком случае напряжение на фотодиоде близко к нулю. То есть фотодиод работает в так называемом режиме короткого замыкания. В этом режиме фотодиод обладает высокой линейностью преобразования мощности света в фототок и малыми шумами.

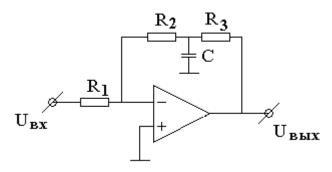

На левом краю резистора с сопротивлением R нулевое напряжение $U_-=0$ относительно общего провода схемы. В таком случае на правом краю этого резистора напряжение равно RI, так как через резистор протекает фототок I.

Напряжение на правом краю резистора R совпадает с напряжением на выходе ОУ и практически совпадает с напряжением на выходе схемы. Резистор сопротивлением 1 кОм включен между выходом ОУ и выходом всей схемы для подавления возбуждения генерации в петле обратной связи ОУ. Дело в том, что подключать выходу обычно нельзя емкость $20n\Phi = 20 \cdot 10^{-12} \Phi$ арад. Иначе поворот фазы на *RC*-цепочке, где *R* сопротивление ОУ, может сделать на высоких отрицательную обратную связь положительной. Включение в схему резистора 1 кОм позволяет подключать к выходу схемы коаксиальный кабель осциллографа без нарушения работы схемы. Емкость коаксиального кабеля имеет величину порядка 100 пФ.

Еще один преобразователь фототока в напряжение.



Активный выпрямитель.


Усилитель с частотной коррекцией.

Усилитель с подъемом на низких частотах:

Подъем начинается с частоты $\omega = \frac{1}{R_2C}$ и происходит на более низких частотах. Параллельно конденсатору можно подсоединить большое сопротивление R_3 для прекращения подъема на очень низких частотах $\omega = \frac{1}{R_3C}$.

Усилитель с подъемом на высоких частотах:

Пусть $R_2\gg R_3$, тогда подъем начинается с частоты $\omega=\frac{1}{R_3C}$. Последовательно с конденсатором можно поставить малое сопротивление R_4 для прекращения подъема на более высоких частотах $\omega=\frac{1}{R_4C}$.