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Spring Semester 2007

Lecture 2: Oscillations

• simple harmonic oscillations;

• coupled oscillations; beats;

• damped oscillations;

• forced oscillations.

• pendulum
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2 Oscillations

2.1 Simple Harmonic Oscillations
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A mass  m is attached to a spring as shown in the figure, and slides
without friction on a horizontal surface.  Its movement is confined to
one dimension which we choose to be the  x axis.

The force exerted on the mass is

F kx= −
where  k is the spring constant.

The equation of motion is
mx kx= −��

or with  ω2=k/m
2 0x xω+ =��

We solve this differential equation by putting tx eλ=
hence ( )2 2 0teλλ ω+ =
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and since 0teλ ≠ we get iλ ω= ± i.e. we have two solutions. 

1 2
i t i tx c e c eω ω−= +

and with Euler’s formula cos sinie iα α α± = ±

we get

( ) ( )1 2 1 2cos sinx c c t i c c tω ω= + + −
and with

( ) ( )1 2
1 1;
2 2

c a ib c a ib= − = +

we have finally
cos sinx a t b tω ω= +

where  a and  b are two integration constants to be defined by the
initial conditions.

The general solution of the DEq is a linear  superposition of these solutions:
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An alternative form of the solution is

( )cosx A tω α= +

A is the amplitude and  α is the initial phase.

The expression tω α+ is the (instantaneous) phase of oscillation.

0 2 4 6 8 10

0

x(t)=cos(2t+0.75)

t

x

Shown in the figure is the s.h.o. ( )cos 2 0.75x A t= +
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2.2 Coupled Oscillations

Consider two masses, each connected to a wall through a spring
of spring constant  k, coupled to each other by a spring of spring
constant  κ and sliding without friction on a horizontal surface.

The displacements of the masses
from their equilibrium positions are
x1 and x2, respectively.

The equations of motion are

( )
( )

1 1 1 2

2 2 1 2

mx kx x x

mx kx x x

κ

κ

= − − −

= − + −

��

��

To solve these simultaneous DEqs we take their sum and difference:

(2.1)

(2.2)
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( ) ( )
( ) ( )( )

1 2 1 2

1 2 1 22

m x x k x x

m x x k x xκ

+ = − +

− = − + −

�� ��

�� ��
(2.1)+(2.2):

(2.1)-(2.2):

and then define two new variables:

1 2 1 2andy x x z x x= + = −

(2.3)

(2.4)

hence

( )2
my ky
mz k zκ

= −

= − +

��
��

i.e. the equations (2.1) and (2.2) are decoupled into two s.h.o. equations.

Define:
( )2 2

1and 2k m k mω ω κ= = +

(2.5)

(2.6)

(2.7)

(2.8)
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then our eqs (2.6) and (2.7) become

2

2
1

0
0

y y
z z

ω

ω

+ =

+ =

��
��

whose solutions are
( )
( )1

cos

cos

y A t

z B t

ω α

ω β

= +

= +
and going back to the coordinates  x1 and x2 by Eq. (2.5), we get

( ) ( )

( ) ( )

1 1

2 1

1 cos cos
2
1 cos cos
2

x A t B t

x A t B t

ω α ω β

ω α ω β

= + + +⎡ ⎤⎣ ⎦

= + − +⎡ ⎤⎣ ⎦

(2.9)

(2.10)

This completes the derivation of the general solution of the equations
of motion.
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To discuss particular cases we must specify the initial conditions.

For instance, let us assume that initially, i.e. at time t=0, both masses
are at rest, with the right-hand mass in its equilibrium position and
the left-hand mass displaced to  x1=a:

1 2 1 2IC: 0, , 0, 0t x a x x x= = = = =� �

Substituting into (2.9) and (2.10) we get

( )
( )

cos cos 2 2.11

cos cos 0 2.12

A B a

A B

α β

α β

+ =

− =

( )
( )

1

1

sin sin 0 2.13

sin sin 0 2.14

A B

A B

ω α ω β

ω α ω β

+ =

− =

and
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which we can satisfy with  α=β=0 (but not with A=0 or B=0: Exercise!)

and hence  B=A, thus

( ) ( )

( ) ( )

1 1

2 1

1 cos cos
2
1 cos cos
2

x A t t

x A t t

ω ω

ω ω

= +⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦
or, using a well known trigonometric identity, we get

1 1
1

1 1
2

cos cos
2 2

sin sin
2 2

x A t t

x A t t

ω ω ω ω

ω ω ω ω

+ −⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ −⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(2.15)

(2.16)
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An interesting case arises when the coupling is weak, i.e. when the spring
constant  κ is much less than k. 

1 12 and
k
κω ω ω ω ω ω ω+ −� � �

and hence Eqs. (2.15) and (2.16) become

( ) ( )
( ) ( )

1

2

cos cos

sin sin

x A t t

x A t t

δ ω

δ ω

=

=

Here the rapid oscillation with circular frequency  ω is modulated by
the slow oscillation of frequency  δ=ωκ/2k.

It is usual to consider the expression ( )cosA tδ to be a

slowly varying amplitude.

(2.17)

(2.18)

Recall: ( )1and 2k m k mω ω κ= = +

hence
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The functions (2.17) and (2.18) are shown in the next figure.

The initial energy of oscillator  1, which was residing in the springs, is
transferred to oscillator  2. At the first node of oscillator  1  all energy
has been transferred to oscillator  2, then the process is reversed.

This phenomenon is called beats.
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2.3 Damped Oscillations

( ) ( ) ( )20R x R x O x′= +� � �

( )0 0R′ <

2
02 0x x xβ ω+ + =�� �

Realistically, there is always some amount of damping resistance present
in every oscillation. In a system like the one of 2.1, the resistance is
the friction between the mass and the supporting surface.

Intuitively we say that the resistance depends on the speed of the mass
but not on its position. At zero velocity the resistance must vanish, therefore
it is reasonable to set

and for this to be a resistance we must have

hence, neglecting the terms of order  x2, we get the equation of motion
of the damped harmonic oscillator in the form of

with ( ) 2
02 0 andR m k mβ ω′= − =

(2.17)



14

Equation (2.17) is a linear differential equation with constant coefficients.

To solve it, we make the substitution (Ansatz): ( ) tx t eλ=

( )2 2
02 0teλλ βλ ω+ + =

0teλ ≠

2 2
02 0λ βλ ω+ + =

2 2
1,2 0λ β β ω= − ± −

( ) 1 2
1 2

t tx t c e c eλ λ= +

hence

but

and therefore we get the characteristic equation

whose two roots are

The general solution of DEq. (2.17) is therefore

(2.18)

(2.19)

(2.20)
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( ) 2 2
0undercritical damp ng: 0ii β ω− <

( ) 2 2 2
0definei : ω ω β= −

Now we must distinguish three cases:

( ) 2 2
0critical damping: 0ii β ω− =

( ) 2 2
0overcritical damping: 0iii β ω− >

1,2 iλ β ω= − ±

( ) ( ) ( ) ( )1 2 1 2
i t i t t i t i tx t c e c e e c e c eβ ω β ω β ω ω− + − − − −= + = +

( )* *
1 2Let and is the complex conjugate ofc c c c c c= =

( ) ( ) ( )* 2 Ret i t i t t i tx t e ce c e e ceβ ω ω β ω− − −= + =

1 with real and
2

ic Ae Aα α=

( ) ( )costx t Ae tβ ω α−= +

hence

hence

or putting

we get

where  A and α are integration constants.
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0

t

x

Example of undercritically damped oscillation:

1, 3, 0.2, 0.8A ω β α= = = = −

0.2te−
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( ) 2 2
0critical damping: 0ii β ω− =

2 1x x=

1
tx e β−=

( )2 2
0defi 0ne 0 at the: endβ ωΛ = − > Λ→

( )2 0

1lim
2

t t t tx e e e teβ β− Λ −Λ −

Λ→
= − =

Λ

( ) ( )1 2
tx t c c t e β−= +

the problem here is that we do not have two linearly independent solutions:

So leave  x1 at the value that comes out of the calculation:

But to construct the second, linearly independent solution, use the
following:

and put

and then the general solution takes on the form
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0 20 40 60 80 100
0

2

4

6

Example of critically damped system: ( ) 0.081 tx t e−= +

x

t

Critical damping is of interest if one wants to make the system settle
down as fast as possible after a disturbance, such as in the wheel
suspensions of vehicles and in many measuring instruments, e.g.
in ballistic galvanometers.
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( ) 2 2
0overcritical damping: 0iii β ω− >

( )2 2 2
0 0e ne: !d fi β ω βΛ = − > Λ <

( ) ( )
1 2;t tx e x eβ β− +Λ − −Λ= =

( ) ( )1 2
t t tx t e c e c eβ− Λ −Λ= +

and for sufficiently large times  t we get an exponentially
decaying displacement:

( ) ( )
11

t
t

x t c e β− −Λ
Λ � ∼

hence

and hence the general solution:
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Example of overcritically damped system:

IC: at 0 : 0 and 0t x x v= = = >�

1 2 1,
2
vc c c= = −
Λ

( ) ( ) sinh
2

t t t tv vx t e e e e tβ β− Λ −Λ −= − = Λ
Λ Λ

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

x=5e-0.5tsinh(0.2t)

thus

t

hence

x
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2
02 cosx x x f tβ ω+ + = Ω�� �

2
02 siny y y f tβ ω+ + = Ω�� �

z x iy= +

cos sin i tt i t e ΩΩ + Ω =

2
02 i tz z z feβ ω Ω+ + =�� �

Ansatz: i tz Ae Ω=

( )2 2
02 i t i tA i e feβ ω Ω Ω−Ω + Ω+ =

2.4 Forced Oscillations

Oscillating system with sinusoidal forcing term:

It is convenient to write down a second, similar equation:

If we multiply Eq. (2.22) by  i, then add it to Eq. (2.21), define the new variable

(2.21)

(2.22)

and use Euler’s formula

then we get the following DEq.:

To solve this DEq we make the 
hence

(2.23)
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( )22 2 2 2
0 4

fA
ω β

=
−Ω + Ω

2 2
0

Im 2tan
Re

A
A

βα
ω
Ω

= =
Ω −

iA A eα=

2 2
0 2

fA
iω β

=
−Ω + Ω

we get the modulus of the amplitude and the phase:

and after cancellation of the exponential factors we get

and with

(2.24)

(2.25)
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( )cos sini t tz Ae e a t b tβ ω ωΩ −= + +

( ) is thecos sint
tz e a t b tβ ω ω−= + transient oscillation

1tβ �
( )i ti tz Ae A e αΩ +Ω= =

( )Re cosx z A t α= = Ω +

The general solution of DEq (2.23) is

where

For we get the steady state solution:

and hence the steady state solution of the original DEq (2.21):

where the amplitude and phase are given by Eqs (2.24) and (2.25).

The amplitude is shown in the next figure as function of the forcing
frequency Ω.
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0 2 4
0

2

4

β=1

β=0.3

β=0.15

β=0.1

Amplitude of forced oscillation as function of the forcing frequency Ω

Ω

|A|

We see that the amplitude has a peak which gets more pronounced
at smaller resistance. Such a behaviour is called a resonance.

The position of the maximum of  |A|  is the resonance frequency;
it is given by

2 2
0 2R ω βΩ = − (2.26)



25

and the height of the resonance peak is given by

2 2
02R

fA
β ω β

=
−

(2.27)

By Eq. (2.26)  reality of the resonance frequency implies

0 2β ω≤

and therefore also |A|R is seen to be real for all allowed values of β.

For  β→0, i.e. in the absence of damping, the amplitude tends to infinity
as we approach resonance. In practice the system breaks up before
resonance is reached.

Of interest is also the behaviour of the phase shift  α as a function of
the driving frequency.

There is no resonance if β≥ω0/√2
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β=0.1

0.15

β=0.3

0.5

Phase shift  α as function of the driving frequency  Ω for ω0=1

Note that  α is passing through π/2  at  Ω=ω0
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2.5 Pendulum

A pendulum consists of a mass  m attached
to one end of a weightless rigid rod which is
suspended without friction from a rigid support

Two forces act on  m: its weight and the   
string tension (not shown in the drawing), 
which is equal in magnitude and opposite
in direction to the component of the weight
in the direction of the string; therefore we 
have

mr W T= +
G GG��

( )ˆ ˆT W r r= − ⋅
G G

Now take the cross product of (2.28) with the vector r

with
(2.28)

G
where is the unit vector in directionˆ ˆW mgx x x=

G
and



28

and on the right-hand side we have

( ) ˆsinr W T r W mgl nϕ× + = × = −
G G GG G

andr T
GG

since the vectors are collinear and therefore their
cross product is equal to nought.

( ) 2 ˆdr r r r l n
dt

ϕ× = × =
G G G G�� � ��

On the left-hand side we have

is the length of the pendulum rod and

n̂
l

is a unit vector perpendicular to andr W
GG

Thus the equation of motion takes on the form of

( )sing lϕ ϕ= −��
or with 2 g lω =

2 sin 0ϕ ω ϕ+ =�� (2.29)
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Equation (2.29) is a nonlinear second order differential equation. The standard
way of solving it is slightly artificial: we begin by multiplying the equation by
ϕ�

2 sin 0ϕϕ ω ϕ ϕ+ =� �� �

and we note that
2

2
d
dt

ϕϕϕ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

�� �� and sin cosd
dt

ϕ ϕ ϕ= −�

hence 2
2 cos 0

2
d
dt

ϕ ω ϕ
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

�

and hence 2
2 cos

2
Cϕ ω ϕ− =

�

where  C is the integration constant. We can fix  C by putting  φ to the
maximum angle φ0, which we call the amplitude. For φ=φ0 the angular
velocity is zero, and hence

2
0cosC ω ϕ= −
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and hence we get

( )
2

2
0cos cos

2
ϕ ω ϕ ϕ= −
�

( )2
02 cos cosϕ ω ϕ ϕ= ± −�

or

and hence

( )2
02 cos cos

ddt ϕ
ω ϕ ϕ

= ±
−

Now the period of oscillation  T is the time of a full swing from –φ0 to φ0
and back. Therefore, making also use of the symmetry of the system, we get

( )

0

0 0

4
2 cos cos

dT
ϕ ϕ

ω ϕ ϕ
=

−∫
This integral belongs to the class of elliptic integrals. They cannot be
expressed in terms of elementary functions. The standard way of
handling such an integral is the following.
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First we apply the identity

2cos 1 2sin
2
ϕϕ = −

( )
( ) ( )

0

2 2
0 0

24
sin 2 sin 2

d
T

ϕ ϕ
ω ϕ ϕ

=
−

∫

hence

and then we make the substitution

0sin sin sin
2 2

uϕϕ
=

and we note that  u=0 for  φ=0  and  u=π/2  for  φ=φ0, hence
2

2
0

4
1 sin

duT
m u

π

ω
=

−
∫

where ( )2
0sin 2m ϕ= is the parameter of the elliptic integral.

(2.30)
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For amplitudes small enough for  m to be negligibly small we get

2 2 lT
g

π π
ω

= =

which is the well known result that we get more easily if we approximate
sin φ by φ in Eq. (2.29).  But the work done to get Eq. (2.30) pays when
we want to apply our result to large amplitudes. Then we can proceed as
follows: we note that  msin2u < 1  for  φ0 < π, and hence we expand:

( )22 2

2

1 1 1 31 sin sin
2 2 41 sin

m u m u
m u

⋅
= + + +

⋅−
…

and we get a first correction if we neglect terms of order m2:

2 0
0

11 sin
4 2

T T ϕ⎛ ⎞= +⎜ ⎟
⎝ ⎠

with 0 2T l gπ=
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For an amplitude of  φ0 = 6 degrees we have

2 01 sin 0.0007
4 2

ϕ
≅

and we see that neglecting this correction is justified.  But for large
amplitudes the power series is inconvenient since one needs to carry
a large number of terms. Then it is simpler to do the integration numerically
to any required accuracy. The results are shown in the next figure:

pendulum

1

1.05

1.1

1.15

1.2

0 30 60 90

amplitude (deg)

T/
T0

In the figure the ratio
T / T0 is shown as a 
function of the amplitude
φ0. One can see that
even at an amplitude of 
90 degrees the period
of oscillation is increased
by less than 20%.
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Problems for Lecture 1:

1.) Show that the speed of a satellite in a circular orbit about the Earth
is given by

Ev R g r=

where  RE =6378 km is the radius of the Earth (to be assumed spherical),
g=9.8 ms-2 is the acceleration due to gravity and r is the radius of the orbit.

Find the speed of the International Space Station, taking its altitude to be
330 km (the actual orbit of the ISS is not perfectly circular but nearly so).

2.) Find the radius of the geostationary orbit about the Earth.
(Answer: 4.22x107 m)
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