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1. Particle in a Central Field

( ) ˆ( )F r f r r=

ˆ,r r r r r= =

( )V r

In 3D space, a force

( ) ( ) ( )V r dV r dV rr x
x dr x r dr

∂ ∂
= =

∂ ∂

where

r F(r)

x

is called a central force.
A central force can be represented as the gradient
of a function of the modulus of the vector  r.
Consider the function
Its derivative w.r.t.  x is

and similarly for the derivatives w.r.t y and z,

y
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( ) ( )F r V r= −∇

( ) ( ) ( ) ( ), ,
ˆ, ,

dV r x y z dV rV V VV r r
x y z dr r dr

⎛ ⎞∂ ∂ ∂
∇ ≡ = =⎜ ⎟∂ ∂ ∂⎝ ⎠

hence

Thus we can represent the central force in the following form:

where the minus sign is conventional.

Newton’s equation of motion for a particle of mass  m in a central
force field is therefore of the following form:

( ) ( )
2

2

d rm F r V r
dt

= = −∇

V(r) is the potential energy function. The meaning of this terminology
will become clear in the following derivation.

(3.2)

(3.1)
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21
2

dr r r
dt
⎛ ⎞⋅ = ⎜ ⎟
⎝ ⎠

( )

2 2 2

2 2 2 2

1 1 1
2 2 2

1 1
2 2

dx dy dzr r xx yy zz
dt dt dt

d dx y z r
dt dt

⋅ = + + = + +

⎛ ⎞= + + = ⎜ ⎟
⎝ ⎠

( ) dVr V r
dt

⋅∇ =

To derive energy conservation, take the scalar product (“dot product”) with

r dr dt= On the left-hand side we get

Indeed:

On the right-hand side we get

Indeed: from Eq. (3.1) we have

( ) r r dVr V r
r dr
⋅

⋅∇ =

(3.3)

(3.4)
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( )2 . .Kinetic Energy

1 :
2

K ET mr≡ ( ) ( ). .Potential Energy: P EV r

( )21 constant.
2

mr V r E+ = =

( )( ) ( )21 0
2

dr mr V r mr V r
dt
⎛ ⎞⋅ +∇ = + =⎜ ⎟
⎝ ⎠

( )dV r dV dr
dt dr dt

dV r r r r r dVx y z
dr x y z r dr

=

⎛ ⎞∂ ∂ ∂ ⋅
= + + =⎜ ⎟∂ ∂ ∂⎝ ⎠

also

and comparing the r.h.s. with (3.5) we get the result (3.4).

Summarising our results we can write

hence

(3.5)
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( );dr r r r
dt

× = ×

r F M× =

( ) ˆ 0r f r r× =

L mr r≡ ×

and hence constant0dL L
dt

= =

We get a second conservation law if we take the vector product of (3.2) 
(“cross product”) with vector  r:

on the l.h.s. we get

and on the r.h.s.:

this is called the moment of force or torque. But since we are considering
central forces, the torque is equal to zero:

Now define the angular momentum:

Thus

(3.6)
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Summary: Newton’s equation of motion for a particle of mass  m in
a central force field

( ) ( )
2

2

d rm F r V r
dt

= = −∇

( ) ˆ( )F r f r r=

( )21 constant.
2

mr V r E+ = =

constantL mr r≡ × =

is of the form

where  V(r) is the P.E. fn, and we could derive two conservation laws:

(i) conservation of energy:

and (ii) conservation of angular momentum:

(3.2)

(3.5)

(3.6)
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2. Kepler Problem

r2

r1

F21=-F12

F12

m2

m1

 x

y 1 2 2 1
12 2

1 21 2

m m r rF G
r rr r
−

=
−−

Thus consider two point masses, m1 and m2,
located at  r1 and r2, respectively.

The force exerted by  m2 on m1 is

and the force exerted by  m1 on m2 is
by Newton’s third law

The Kepler problem is the problem of the motion of a planet in the
gravitational field of the sun or, more generally, the motion of two masses
in gravitational interaction.

21 12F F= −
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( )1 2
1 1 2 13

1 2

m mm r G r r
r r

= −
−

( )1 2
2 2 2 13

1 2

m mm r G r r
r r

= − −
−

(3.7)

(3.8)

1 1 2 2 0m r m r+ =

1 1 1 2 2 2;p m r p m r= =

( )1 2 0d p p
dt

+ =

1 2P p p= +

constantP =

therefore our result (3.9) can be expressed by

conservation of total momentum

Thus we have the following two equations of motion for the two masses:

If we add Eqs. (3.7) and (3.8), we get

or with

(3.9a)

is the total momentum of the two-body system

(3.9)
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1 1 2 2

1 2

m r m rR
m m
+

=
+

( )1 2 constantR P m m= + =

The radius vector of the centre of mass of  m1 and m2 is defined by

hence taking its derivative we find with Eq. (3.9):

(3.10)

(3.11)

0MR =

and hence

(3.12)

This equation is identical with Eq. (3.9) (or (3.9a)), but now we have
a new interpretation: the entire two-particle system of mass  M=m1+m2
is moving without acceleration.
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0 constant;R R vt v= + =

If we integrate Eq. (3.11), then we get

0where is an integration constant andR v R=

Carry out a GT into a frame in which the c.o.m. is at rest and at the
origin (Exercise!): this is called the centre of mass frame or
centre of mass system (CMS).

This is illustrated on the next slide.
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x

y
p1

p2=-p1

m1

m2
2 1

the centre of mass frame of
particles  m1 and m2

it is defined by

p p= −

( ) ( )1
2 1

2

mr t r t
m

= −

but the distance from the origin
at any instant  t is different:

in the CMS, Eq. (3.11) takes on the following form:

0MR =
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Let us go back to the equations of motion of the system of two
interacting particles, but write it down for an arbitrary force.
Taking account of Newton’s third law we have:

1 1

2 2

m r F

m r F

=

= −

(3.13)

(3.14)

Divide (3.13) by  m1 and (3.14) by  m2, then subtract, hence

1 2
1 2

1 1r r F
m m

⎛ ⎞
− = +⎜ ⎟

⎝ ⎠

1 2r r r= −

1 2

1 1 1
m mμ

= +

Now define

and

relative coordinate

reduced mass μ

(3.15)
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then (3.15) becomes

r Fμ = (3.16)

and if we add (3.13) and (3.14), then as before we get Eq. (3.12):

0MR = (3.12)

Thus our original equations (3.13) and (3.14) have been transformed
into two simpler equations (3.12) and (3.16).
Equations (3.13) and (3.14) both depended on two vectors,  r1 and r2.
They are therefore coupled equations; in (3.12) and (3.16) we have
decoupled them.

In the particular case, when the force  F is the gravitational interaction,

1 2 2 1
12 2

1 21 2

m m r rF G
r rr r
−

=
−−
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we get

1 2
2

ˆm mr G r
r

μ = −

and if we note from the definition of the reduced mass that

( )1 2 1 2m m m m Mμ μ= + =

then we get the equation of motion in the following form:

2
ˆMr G r

r
μμ = −

which is the equation of motion of a particle of mass  μ in the 
gravitational field of a mass  M that is at rest at the origin of the
coordinate system.

(3.17)
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Our task is now to solve Eq. (3.17), and then go back to the coordinates
of the particles m1 and m2

Recall our results found for central forces:
• Conservation of energy, and
• conservation of angular momentum

( )21 constant.
2

r V r Eμ + = =

and hence constant0dL L
dt

= =

( ) ( ) 2
ˆMV r F r G r

r
μ

∇ = − =

where  V(r)  is defined by

(3.18)

(3.19)
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( ) withV r G M
r
γ γ μ= − =

L r rμ= ×
and we remember that

hence

Now we use conservation of angular momentum, Eq. (3.19), to simplify
the expression (3.18) for the energy.

First we note that the conservation of angular momentum implies
that the angular momentum vector has a constant direction.

But the cross product of two vectors is perpendicular to the plane
spanned by these vectors.

Therefore the vectors andr r stay in one plane. Without …
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… loss of generality we can make this the  xy plane.
Therefore

( )cos ,sin ,0r r ϕ ϕ=

( )22 2 2 4 2L r r rμ μ ϕ= × =

( ) ( )cos ,sin ,0 sin ,cos ,0r r rϕ ϕ ϕ ϕ ϕ= + −

2 2 2 2 2andr r r r r rϕ ϕ= + × =

and its derivative is

thus

Recall:

( )2 . .Kinetic Energy
1 :
2

K ET rμ=

(3.20)

hence with (3.20):
2

2
2

1
2 2

LT r
r

μ
μ

= +

(3.21)
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2
2

2

1
2 2

Lr E
r r

γμ
μ

+ − =

hence

We have separated the K.E. into two terms. The first term depends on
the radial velocity and the second term depends only on  r. Thus the
second term is, mathematically, similar to a potential energy. This
leads us to the notion of an effective P.E.:

( )
2

22eff
LV r

r r
γ

μ
= −

0.2 0.4 0.6 0.8 1

-10

-5

5

10

This fn has a minimum at
2

0r L μγ=

( )
2

0 22effV r
L

μγ
= −

(3.22)

(3.23)

(3.24)



20

The total energy cannot be less than the minimum of the effective P.E.
since otherwise we would get a negative square of the radial velocity.
Thus

2

22
E

L
μγ

≥ −

The equal sign corresponds to zero radial velocity, i.e. to circular motion.
The radius of the circular orbit is by Eq. (3.23) related to the energy  E:

For Emin<E<0 the motion lies between a minimum and a maximum
value of  r, which we get from the condition

( )effE V r=
2

22
LE

r r
γ

μ
= −i.e.

Solving for  r we get …

0 2r Eγ= −

This is a remarkable result that we will remember when we come to
discuss the Bohr theory of the hydrogen atom!
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2 2

max,min 2 2 2
Lr

E E E
γ γ

μ
⎛ ⎞= − ± +⎜ ⎟
⎝ ⎠

where the upper (lower) sign corresponds to rmax ( rmin ).

For E >0  only the upper sign gives an acceptable value; the second
root must be rejected.
In astronomical terms E > 0 corresponds to the motion of a
non-recurring comet.

Proceed now to solving Eq. (3.22):

2
2

2

1
2 2

Lr E
r r

γμ
μ

+ − = (3.22)

To do this, recall Eq. (3.21) which we rewrite in the form of
2L rμ ϕ=
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hence

2

L
r

ϕ
μ

=

and then we eliminate the time by noting:

2

dr dr d dr L
dt d dt d r

ϕ
ϕ ϕ μ

= =

and substituting into (3.22) we get
22 2

2 2

1
2 2
L dr L E

r d r r
γ

μ ϕ μ
⎛ ⎞

+ − =⎜ ⎟
⎝ ⎠

2

2 2 2 2

1 1 2 1 2dr E
r d r L r L

μγ μ
ϕ

⎛ ⎞
+ − =⎜ ⎟

⎝ ⎠

or
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2hence
1 1, du dru
r d r dϕ ϕ

= = −

2
2

2 2

2 2du Eu u
d L L

μγ μ
ϕ

⎛ ⎞
+ − =⎜ ⎟

⎝ ⎠

2

22 2 0u u uu u
L
μγ′ ′′ ′ ′+ − =

( ) ( ) 20, ori u ii u u
L
μγ′ ′′= + =

( )2

1 cosu A
r L

μγ ϕ α= = + +

Now define

hence

Differentiate w.r.t. φ

Here u’ is a common factor; therefore we have

either

Option (i) is the circular motion; consider option (ii): this DEq has the solution
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( ) ( ) ( )
2

2

2

1
1 coscos

Lr
A LA

L

μγ
μγ μγ ϕ αϕ α

= =
+ ++ +

r
θ

and finally the equation of the trajectory:


	Selected Topics in Physics�a lecture course for 1st year students�by W.B. von Schlippe�Spring Semester 2007
	1. Particle in a Central Field
	2. Kepler Problem

