СПбГУ

Санкт-Петербургский государственный университет

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

                                                   

Фотоны

 

 

8.1. Энергия электромагнитного поля

Состояние электромагнитного поля в резонаторе можно задать, перечислив состояния всех соответствующих допустимым модам излучения полевых осцилляторов (8.1). Независимость друг от друга полевых осцилляторов позволяет представить состояние всего электромагнитного поля в виде произведения состояний каждой его моды. Полная энергия оказывается равной сумме энергий, находящихся в каждой из мод (8.2). Энергия каждой моды может принимать дискретные значения, отстоящие друг от друга на величину, равную энергии планковского кванта (8.3). Это свойство позволяет формально сопоставить каждому состоянию полевого осциллятора набор частиц, каждая из которых обладает энергией (8.3), число которых равно номеру этого состояния. Такие частицы принято называть фотонами.

Определенные трудности в теории вызывает тот факт, что энергии нижних состояний полевых осцилляторов оказываются отличными от нуля. Т.о. любая мода из бесконечного набора даже в отсутствии в ней реально наблюдаемых фотонов обладает энергией, равной половине энергии планковского кванта. Полная же энергия вакуума, даже в случае отсутствия в нем излучения оказывается бесконечно большой. В рассматриваемом случае представляется малоприемлемым часто используемый в физике способ переопределения энергии системы за счет сдвига начального уровня ее отсчета. Происхождение отличного от нуля значения энергии нижнего состояния имеет глубокий физический смысл, поскольку проистекает из правила коммутации операторов обобщенной координаты и импульса. Именно это свойство операторов в конечном итоге приводит к правильному описанию эффекта спонтанного излучения, не объясненного «классической» квантовой механикой и ряда других «тонких» эффектов, наблюдаемых на эксперименте. Следуя введенной терминологии, соответствующие «половинкам фотонов» нижние состояния можно назвать темновыми фотонами или нуль-колебаниями электромагнитного вакуума. Вместе с тем следует отметить, что полученный результат в виде бесконечно большой энергии элдектромагнитного вакуума,по-видимому, является физически бессмысленным и свидетельствует о внутренней противоречивости и незавершенности имеющейся на сегодняшний день квантовой релятивистской теории излучения.

 

 

 

 

(8.1)

Задание состояния электромагнитного поля в резонаторе в виде совокупности невзаимодействующих друг с другом полевых осцилляторов.

 

 

(8.2)

 

Энергия электромагнитного поля как сумма энергий полевых осцилляторов.

 

(8.3)

Энергия фотона, соответствующего моде излучения с волновым вектором k.

 

8.2. Импульс электромагнитного поля

Фотон, как ультрарелятивистская частица, помимо энергии должен обладать и импульсом, связанным с энергией стандартным релятивистским соотношением (8.4). Ожидаемое выражение для импульса фотона может быть действительно получено в рамках принятого в квантовой электродинамике формализма полевых осцилляторов. Явный вид оператора импульса (8.5) записывается естественным образом по аналогии с классическим выражением и с учетом ранее полученных выражений для операторов векторного потенциала и поля (7.29 — 7.30) может быть выражен через операторы обобщенных координат и импульсов полевых осцилляторов (8.6). Из последнего соотношения непосредственно следует ожидаемое из не квантовой релятивистской теории «правильное» выражение для импульса электромагнитного поля (8.7). В отличие от рассмотренной противоречивой ситуации с энергией, в случае импульса электромагнитного поля из-за векторного характера входящих в сумму слагаемых полный импульс не содержащего электромагнитного излучения пространства в определенном смысле оказывается равным нулю.

 

 

(8.4)

Квадрат четырехвектора энергии-импульса для фотона и выражение для импульса фотона.

(8.5)

Оператор импульса электромагнитного поля в резонаторе.

(8.6)

Оператор импульса электромагнитного поля в виде разложения на осцилляторы.

(8.7)

Импульс квантованного электромагнитного поля.

 

8.3. Поляризация излучения и «спин» фотона

Если в рамках классической физики понятие поляризации электромагнитных волн не требует особых комментариев, то выяснение смысла этой характеристики в случае корпускулярного описания представляется весьма содержательным.

Даже на языке классической физики может быть приведен ряд соображений, указывающих на тесную связь поляризации излучения со спином фотона, который в случае движущейся со скоростью света частицы обычно называют спиральностью. Для выяснения связи поляризации излучения с переносимым им моментом импульса достаточно рассмотреть процесс взаимодействия атома Томсона с излучением круговой поляризации. При установившемся вынужденном вращении квазиупругого электрона с частотой вращения электрического поля волны угол между векторами скорости электрона и напряженности поля остается постоянным. При этом скорость передачи энергии излучения системе оказывается пропорциональной скорости передачи ей момента импульса (8.8). Подстановка в полученное выражение планковской формулы для энергии излучения приводит к предположению о том, чтоz-проекция момента импульса фотона с круговой поляризацией может иметь величину, равную постоянной Планка. В этом случае кажется логичным приписать фотону собственный момент импульса равный по величине одной постоянной Планка.

К аналогичному выводу приводят и другие соображения, основанные на связи величины спина системы с трансформационными свойствами состояний поляризации излучения при вращении системы координат. Так очевидно, что при повороте системы координат вокруг оси z, направление которой совпадает с направлением распространения плоской монохроматической волны, два возможных состояния ее линейной поляризации преобразуются друг через друга (8.9). В случае же состояний круговой поляризации (8.10) поворот системы координат приводит лишь к их умножению на фазовый множитель (8.11) в точности совпадающий с аналогичным множителем, возникающим при поворотах вокруг оси z систем с единичным спином. Именно это свойство состояний поляризации позволяет приписать фотону плоской монохроматической волны круговой поляризации собственный момент импульса, равный единице.

Приписывание фотону единичного спина носит несколько условный характер, поскольку спином принято называть внутренний момент импульса частицы в тех системах отсчета, относительно которых рассматриваемая частица остается неподвижной. Именно отсутствие системы отсчета, в которой частица может покоиться, в конечном итоге приводит к запрету существования фотонов в сферически-симметричных состояниях. Именно по этой причине состояние |S=1, MS=0> случае фотонов оказываются нереализуемыми в природе.

 

(8.8)

Скорости передачи энергии и момента импульса атому Томсона электромагнитным излучением круговой поляризации и связь между моментом импульса и энергией классического электромагнитного излучения.

(8.9)

Преобразование состояний линейной поляризации при вращении системы координат.

(8.10)

Связь между состояниями круговой и линейной поляризацией

(8.11)

Преобразование состояний круговой поляризации излучения при вращении системы координат.

 

8.4. Полный момент и четность фотона

При решении задач взаимодействия излучения с атомом электромагнитное поле удобнее рассматривать как совокупность сферических волн, являющихся решением уравнения Д’Аламбера, записанным в сферических координатах (8.12). В некотором смысле это уравнение для векторного потенциала можно рассматривать как аналог уравнения Шредингера для электрона (2.4 — 2.5). Оба уравнения имеют сходную структуру и содержат квадрат оператора момента количества движения. Отличие состоит лишь в отсутствии слагаемого, содержащего кулоновский потенциал 9фотон является электрически нейтральной частицей) и в векторном характере искомого решения. Последнее требует некоторого уточнения: строго говоря, волновая функция электрона в классическом уравнении Шредингера не является скаляром, поскольку содержит в себе спиновую часть, отвечающую двум возможным состояниям собственного момента количества движения электрона (спин 1/2). В этом смысле различие между векторным потенциалом («волновой функцией») для фотона и «скалярной» (а реально — двухкомпонентной) волновой функцией электрона состоит только в величине спина сравниваемых элементарных частиц. Следует еще раз напомнить, что величина спина характеризует число состояний неподвижного объекта, преобразующихся друг через друга при вращениях координат.

Как и в случае решения задачи о движении электрона в кулоновском поле ядра стационарное (т.е. зависящее от времени по гармоническому закону) решение этого уравнения разумно искать в виде произведения двух функций: радиальной и угловой (8.13). В качестве последней следует использовать любую из ранее введенных шаровых функций (5.7), составляющих полный набор собственных функцией оператора квадрата момента количества движения. Построенное решение (8.13) содержит два множителя, преобразующиеся при вращениях системы координат: шаровые функции и вектор поляризации. Формально, по аналогии с задачей о электроне в атоме водорода, порядку l шаровой функции Ylm хочется сопоставить момент импульса фотона, а вектору поляризации — равный единице спин фотона (частицы с единичным спином ведут себя при вращениях подобно классическому вектору). Полный же момент фотона (как и в случае электрона) должен представлять сумму орбитального и спинового.

К сожалению, приведенная аналогия не является вполне удовлетворительнойиз-заравенства нулю массы покоя фотона. Эта очевидная особенность фотона делает невозможным существование системы координат, в которой бы он покоился. В результате понятие спина, традиционно определяемое как собственный момент количества движения покоящейся частицы, для фотона теряет смысл. Так же оказывается невозможным и корректное определение спина фотона как характеристики числа состояний, преобразующихся друг через друга при поворотах: обязательное для фотона состояние движение со скоростью света всегда выделяет одно направление в пространстве, изменение которого при повороте означало бы изменение волнового вектора фотона и, следовательно, номер соответствующей ему моды. Невозможность корректного разделения орбитального и спинового моментов фотона можно пояснить и на еще одном языке: условие поперечности для электромагнитных волн по существу накладывает дополнительное ограничение на взаимную ориентацию волнового вектора и вектора поляризации. В результате «орбитальное» и «спиновое» движение фотона не могут считаться независимыми. Т.о. в случае фотона оказывается возможным говорить только о полном моменте импульса частицы.

Помимо энергии, импульса и полного момента фотону может быть приписана определенная четность, характеризующая поведение волновой функции при инверсии координат. Указанная операции изменяет знак обычного трехмерного пространственного вектора на противоположный. Шаровая функция с индексами l, m=l при инверсии ведет себя подобно 2l — положительно направленным спинорам, каждая пара которых подобны пространственному вектору (8.14). Т.о. четность такой функции оказывается равной (-1)l. При поворотах системы координат шаровая функция с указанными индексами преобразуется через набор всевозможных шаровых функций порядка l. Поскольку в случае отсутствия слабых взаимодействий оператор инверсии с гамильтонианом системы, он коммутирует и с входящим в выражение для гамильтониана оператором квадрата момента импульса, а следовательно — и со связанным с ним оператором поворота. В результате оказывается, что весь набор шаровых функций порядка l обладает одинаковой четностью.

Из-затого, что волновая функция фотона носит векторный характер (т.е. содержит вектор поляризации, четность которого отрицательна), полная четность фотона оказывается равной (-1)l+1.

 

(8.12)

Уравнение Д’Аламбера в сферических координатах

(8.13)

Вид стационарного решения уравнения (8.12) и дифференциальное уравнение для радиальной части векторного потенциала.

(8.14)

Четность шаровых функций порядка l и четность соответствующей волновой функции фотона.

 

8.5. Векторная частицы в состояниях с различными целочисленными моментами импульса

Для построения классификации фотонов по моменту и четности целесообразно решить вспомогательную задачу нахождения допустимых значений полных моментов нерелятивистской векторной частицы с заданным орбитальным моментом. В качестве простейшего примера может быть рассмотрена векторная частица в р-состоянии(с орбитальным моментом l=1). Базисные состояния такой системы могут быть заданы в виде произведений состояний орбитального и спинового моментов (8.15). Такой базис разумно называть набором состояний с определенными проекциями орбитального и спинового моментов. Проекция полного момента системы на вертикальную ось по-прежнему определяется исходя из результата действия на состояние оператора поворота вокруг оси z. Состоянию с равными единице проекциями на ось z орбитального и спинового моментов может быть так же отнесено к состоянию нового базиса с полным моментом j=2 и его максимально возможной проекцией Mj=+2 (8.16). Остальные 4 состояния из группы с j=2 представляют собой симметричные линейные комбинации исходных базисных состояний (8.15) с одинаковыми суммами проекций орбитального и спинового моментов (8.17). В последнем утверждении легко убедиться, подействовав оператором произвольного поворота на состояние |j=2, m=2>, в результате которого указанное состояние должно превратиться в линейную комбинацию группы новых базисных состояний вида |j=2,Mj> (8.18). Всей этой группе соответствуют состояния, представляющие собой полностью симметричны линейные комбинации всех мыслимых комбинаций из четырех спиноров, взятых с одинаковыми весовыми множителями. В свою очередь, из этих линейных комбинаций легко составить состояния исходного базиса с определенными проекциями обоих моментов.

Оставшаяся антисимметричные линейные комбинации состояний старого базиса с |M|

Т.о. из заданного набора 9 произведений состояний с определенными проекциями моментов удалось построить такое же число новых базисных состояний с определенным значением полного момента и его проекции. В полном соответствии с квантовомеханическими правилами сложения моментов множество вновь построенных состояний содержит суммарные моменты, лежащие в интервале от |l-s| до l+s.

 

(8.15)

5 из 9 базисных состояний векторной нерелятивистской частицы с единичными орбитальным моментом и спином.

(8.16)

Определение полного момента импульса состояния

(8.17)

Переход от базиса состояний с определенной проекцией момента и спина к новому базису состояний с определенным полным моментом.

(8.18)

Методика поиска явного вида линейных комбинаций, приводящих к различным состояниям с j=2.

(8.19)

Состояние с равным единице полным моментом частицы.

(8.20)

Скалярное состояние системы с равным нулю спином.

 

8.6. Классификация фотонов

Перечисленные по алгоритму (8.15) набор состояний с полным моментом для векторной частицы оказывается избыточным для фотона, не имеющего «продольных» состояний с направленным по волновому вектору вектором поляризации. Для выявления «лишних» состояний продольной поляризации полезно установить их четность. Для того, чтобы физические свойства гипотетического «продольного» фотона оставались неизменными, производимые над ним преобразования симметрии не должны затрагивать волнового вектора (и параллельного ему вектора поляризации). Т.о. оказываются возможными только вращения вокруг волнового вектора, в результате которых объект должен проявлять свойства симметрии, соответствующие его полному моменту j. Т.о. координатная часть волновой функции фотона должна содержать шаровую функцию порядка j. При инверсии координат, не затрагивающей направление вектора k, шаровая функция полностью определяет четность всей волновой функции фотона — (-1)j. Именно состояние с такой четностью оказывается «лишним» и должно быть вычеркнуто их полного списка возможных состояний фотонов:

 

j

l

Четность = (-1) (-1)l

Четность= F(j)

Классификационное название

0

1

(+)

(-1)j

Продольное состояние (не сущ-т).

1

0

(-)

(-1)j

Электрический дипольный фотон

1

1

(+)

(-1)j+1

Магнитный дипольный фотон.

1

2

(-)

(-1)j

Продольное состояние (не сущ-т).

2

1

(+)

(-1)j

Электрический квадрупольный фотон.

2

2

(+)

(-1)j+1

Магнитный квадрупольный фотон.

2

3

(-)

(-1)j

Продольное состояние (не сущ-т)

Ответственный за содержание: специалист управления по связям с общественностью С. С. Смирнова, s.s.smirnova@spbu.ru

Поиск