21. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда.

 $d\Phi \equiv \left(\vec{E}, d\vec{S} \right)$ — определение потока поля \vec{E} через произвольно ориентированную площадку $d\vec{S}$, где вектор $d\vec{S} \uparrow \uparrow \vec{n}$ — направлен по нормали к площадке \vec{n} .

Теорема Гаусса утверждает, что

 $\Phi_E = 4\pi Q$, где Φ_E — поток через замкнутую поверхность, границу объема V; Q — сумма зарядов в объеме V.

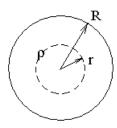
При вычислении потока используется внешняя нормаль к поверхности — нормаль, направленная наружу из объема V.

Теорема доказывается для неподвижных зарядов. По предположению Максвелла формулировка теоремы остается справедливой и для движущихся зарядов. Все следствия из этого предположения согласуются с опытом, следовательно, так оно и есть.

<u>Задача 1.</u> Дан шар с радиусом R и объемной плотностью заряда ρ . Найти в любой точке пространства поле \vec{E} .

Решение.

Будем искать поле \vec{E} внутри шара на расстоянии r от центра шара $r \le R$. Рассмотрим сферу с радиусом r с центром, совпадающим с центром заряженного шара.



Для сферы радиусом r применим теорему Гаусса:

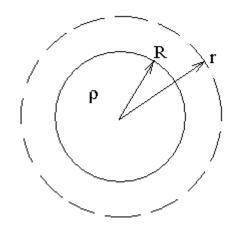
$$\Phi_E = 4\pi Q = >$$

$$E(r) S(r) = 4\pi \rho V(r) = >$$

$$E4\pi r^2 = 4\pi \rho \frac{4}{3}\pi r^3 = >$$

$$E = \frac{4}{3}\pi\rho r$$
 при $r \le R$

Найдем теперь E при $r \ge R$. Рассмотрим сферу $r \ge R$:



Для сферы
$$r \ge R$$
:
 $\Phi_E = 4\pi Q$ =>

$$ES = 4\pi\rho V$$
 =>

$$E4\pi r^2 = 4\pi\rho \, \frac{4}{3}\pi R^3$$

Здесь объем $V = \frac{4}{3}\pi R^3$, так как только в этой части объема $\frac{4}{3}\pi r^3$ есть заряды. Тогда

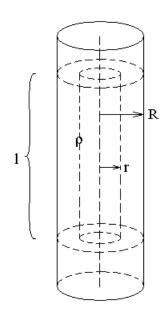
$$E = \frac{4}{3}\pi\rho \frac{R^3}{r^2} \text{ при } r \ge R.$$

$$E = \frac{Q}{r^2}$$
 при $r \ge R$, где Q — полный заряд шара.

Задача 2. Дан бесконечно длинный цилиндр радиуса R с плотностью заряда ho. Найти поле $ec{E}$.

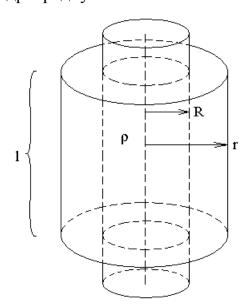
Решение.

Чтобы найти поле E внутри заряженного цилиндра рассмотрим применение теоремы Гаусса к соосному цилиндру с радиусом $r \le R$ и длиной l.



$$\Phi_E=4\pi Q$$
 $ES=4\pi
ho V$ $E2\pi rl=4\pi
ho\,\pi r^2 l$ $E=2\pi
ho r$ при $r\leq R$.

Найдем теперь поле \vec{E} снаружи заряженного цилиндра при $r \geq R$. Рассмотрим цилиндр с радиусом $r \geq R$ и высотой l .



$$\Phi_E = 4\pi Q$$

$$ES = 4\pi \rho V$$

$$E 2\pi r l = 4\pi \rho \pi R^2 l$$

Здесь объем $V=\pi R^2 l$, так как только в этой части объема $\pi r^2 l$ есть заряды. Тогда

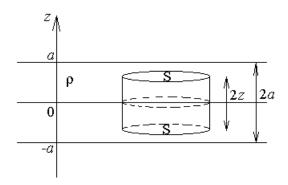
$$E = 2\pi \rho \frac{R^2}{r}$$
 при $r \ge R$.

Задача 3. Дан бесконечный слой толщиной 2a с плотностью заряда ρ . Найти поле \vec{E} .

Решение.

Сначала поищем напряженность внутри заряженного слоя при $|z| \le a$.

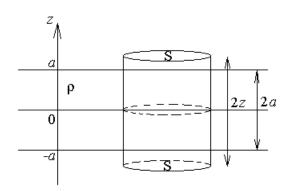
Применим теорему Гаусса к цилиндру с площадью основания S и высотой 2z . Пусть цилиндр симметрично расположен относительно заряженного слоя.



$$\Phi_E = 4\pi Q$$
 => $2ES = 4\pi \rho V$ => $2ES = 4\pi \rho 2zS$ =>

 $E_z=4\pi\rho\,z$ при $|z|\leq a\,,$ где ось z направлена перпендикулярно заряженному слою.

Теперь поищем напряженность снаружи заряженного слоя при $|z| \ge a$.



$$\Phi_E = 4\pi Q$$
 => $2ES = 4\pi \rho V$ => $2ES = 4\pi \rho \, 2aS$ => $E = 4\pi \rho \, a$ при $|z| \ge a$, где ось z направлена перпендикулярно заряженному слою.

22. Теорема Стокса и ее применение к вычислению магнитных полей простейших распределений плотности тока.

Теорема Стокса — чисто математическая теорема. Для любого векторного поля \vec{A} :

$$\int_{S} \left(rot(\vec{A}), d\vec{S} \right) = \oint_{I} \left(\vec{A}, d\vec{l} \right).$$

В этом экзаменационном вопросе вместо теоремы Стокса имеется в виду теорема о циркуляции магнитного поля:

$$\oint_I B_I \, dl = \frac{4\pi}{c} I$$
, где I — токи, пронизывающие контур интегрирования.

Для положительных токов I направление обхода контура l и направления тока образуют правый винт.

<u>Задача 1.</u> Магнитное поле В внутри и снаружи длинного цилиндрического проводника с заданной плотностью тока \vec{j} .

Пусть радиус проводника R.

Магнитное поле тока закручено вокруг тока, что следует из закона Био-

Савара:
$$d\vec{B} = \frac{I}{c} \frac{\left[d\vec{l} \ , \vec{r} \right]}{r^3}$$
. Здесь $I d\vec{l}$ — элемент тока, \vec{r} — вектор, проведенный из элемента тока в точку наблюдения магнитного поля.

Из того, что магнитное поле закручено вокруг тока следует, что в рассматриваемой задаче будет только азимутальная составляющая магнитного поля.

Составляющая поля вдоль провода внутри и снаружи проводника равна нулю $B_z = 0$.

Радиальная составляющая поля внутри и снаружи проводника равна нулю $B_r = 0$.

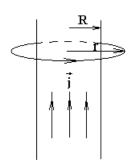
Чтобы найти азимутальную составляющую магнитного поля рассмотрим циркуляцию поля \vec{B} по контуру в виде окружности в плоскости перпендикулярной оси провода с током. Пусть центр окружности находится на оси провода.

Рассмотрим сначала окружность, радиус которой r меньше радиуса проводника R .

$$\oint_l B_l \, dl = \frac{4\pi}{c} I \qquad \Longrightarrow \qquad B_{\varphi} \, l = \frac{4\pi}{c} \, j \, S \qquad \Longrightarrow \qquad B_{\varphi} \, 2\pi r = \frac{4\pi}{c} \, j \, \pi r^2 \qquad \Longrightarrow \qquad B_{\varphi} = 2\pi \frac{j}{c} r \qquad \text{азимутальная составляющая поля внутри проводника с}$$

плотностью тока \vec{j} .

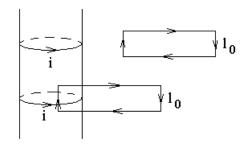
Рассмотрим теперь окружность, радиус которой r больше радиуса проводника R.



$$\oint_l B_l dl = \frac{4\pi}{c} I \qquad \Longrightarrow \qquad B_{\varphi} \, l = \frac{4\pi}{c} \, j \, S \qquad \Longrightarrow \qquad B_{\varphi} \, 2\pi r = \frac{4\pi}{c} \, j \, \pi R^2 \qquad \Longrightarrow \qquad B_{\varphi} = 2\pi \frac{j}{c} \, \frac{R^2}{r} \qquad =$$
 азимутальная составляющая поля снаружи проводника

при $r \ge R$.

Задача 2. Найти поле соленоида бесконечной длины.



Соленоид представляет собой цилиндр, по боковой поверхности которого течет ток с плотностью поверхностного тока i = nI. Здесь n — число витков на единице длины соленоида, I — сила тока в соленоиде. Токи текут вокруг оси цилиндра.

Найдем величину составляющей магнитного поля вдоль оси цилиндра. Других составляющих и нет.

Рассмотрим прямоугольный контур, в плоскости которого лежит ось цилиндра.

Если контур целиком лежит снаружи соленоида (верхний прямоугольник на рисунке), то никакие токи его не протыкают, и по теореме о циркуляции магнитного поля циркуляция по этому контуру будет равна нулю.

Горизонтальные участки прямоугольного контура находятся в равных условиях, поэтому они дают нулевой суммарный вклад в циркуляцию. Следовательно, и на вертикальных участках контура суммарный вклад в циркуляцию нулевой.

Вклад в циркуляцию на левом вертикальном отрезке равен $B_z \cdot \Delta z$, а на правом равен $-B_z \cdot \Delta z$. Нулевой суммарный вклад на двух вертикальных отрезках означает, что вертикальная составляющая магнитного поля одинаковая во всех точках снаружи соленоида $B_z = const$. На бесконечном удалении от соленоида магнитного поля нет. Следовательно, снаружи соленоида $B_z = 0$.

Рассмотрим теперь циркуляцию магнитного поля \vec{B} по контуру нижнего прямоугольника. Вклад в циркуляцию создает только вертикальный отрезок внутри соленоида.

$$\oint_{I} B_{l} dl = \frac{4\pi}{c} I \qquad \Longrightarrow \qquad B_{z} \Delta z = \frac{4\pi}{c} i \Delta z \qquad \Longrightarrow$$

 $B_z = \frac{4\pi}{c} i = \frac{4\pi}{c} nI$ — магнитное поле внутри соленоида, направленное вдоль его оси.

 $B_z = 0$ — осевая составляющая поля снаружи соленоида.

На экзамене можно не доказывать, но знать нужно, что:

 $B_r = 0$ — радиальная составляющая поля внутри и снаружи соленоида.

 $B_{\varphi} = 0$ — азимутальная составляющая поля внутри и снаружи соленоида.

На самом деле снаружи соленоида есть небольшая азимутальная составляющая

магнитного поля
$$B_{\varphi} = \frac{2I}{cr}$$
, где r — расстояние от оси соленоида до точки

наблюдения. Это поле прямого провода с током. Эта составляющая магнитного поля связана с током I по боковой поверхности вдоль оси соленоида, который появляется, если провод с током подходит к соленоиду с одного его торца, а отходит от соленоида с другого торца.

Задача 3. Магнитное поле плоского слоя с током.

Пусть в объеме между двумя параллельными плоскостями текут токи с одинаковой во всех точках плотностью тока \vec{j} .

$$\vec{B} = \vec{B}_j + \vec{B}_n + \vec{B}_\tau$$

Составляющая магнитного поля вдоль тока внутри и снаружи слоя с током равна нулю $B_j=0$, так как из закона Био-Савара $d\vec{B}=\frac{1}{c}\frac{\left[\vec{j},\vec{r}\right]}{r^3}dV$ следует, что $\vec{B}\perp\vec{j}$.

Составляющая магнитного поля перпендикулярная слою внутри и снаружи слоя также равна нулю $B_n = 0$.

Составляющую магнитного поля \vec{B}_{τ} в направлении параллельном границам слоя и перпендикулярно току можно найти, рассмотрев циркуляцию поля \vec{B} по прямоугольному контуру.

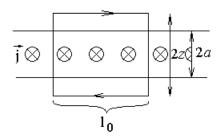
Пусть $|z| \le a$.

Вклад в циркуляцию дают только горизонтальные отрезки. Вклад двух горизонтальных отрезков одинаков. Тогда

$$\oint_{l} B_{l} dl = \frac{4\pi}{c} I \qquad => \qquad 2B_{\tau} l_{0} = \frac{4\pi}{c} jS \qquad => \qquad 2B_{\tau} l_{0} = \frac{4\pi}{c} j 2z l_{0} \qquad =>$$

 $B_{ au} = \frac{4\pi}{c}\, jz$ — магнитное поле внутри слоя $|z| \leq a$ в направлении параллельном границам слоя и перпендикулярно току.

Пусть теперь $|z| \ge a$.



 $B_{\tau} = \frac{4\pi}{c} ja$ — магнитное поле снаружи слоя $|z| \ge a$ в направлении параллельном границам слоя и перпендикулярно току.

23. Проводники и диэлектрики в электростатическом поле.

Проводник — материал, в котором под действием электрического поля \vec{E} течет электрический ток.

Свойства проводников.

1. $\vec{E}_{\textit{внутри}} = 0$ — поле \vec{E} внутри проводника отсутствует.

Докажем это утверждение методом "от противного". Предположим, что $\vec{E}_{\mathit{ehvmpu}} \neq 0$ и получим противоречие.

И действительно. Если электростатическое поле внутри неподвижного проводника не равно нулю $\vec{E}_{\it внутри} \neq 0$, то по определению проводника в проводнике течет ток, тогда заряды движутся, и не выполняются условия электростатики. Полученное противоречие доказывает, что поле $\vec{E}_{\it внутри}$ внутри проводника равно нулю.

Если же отойти от рассмотрения электростатики, тогда, если в проводнике течет ток, то в проводнике есть отличное от нуля электрическое поле. Приложенное к проводнику напряжение создает в нем электрический ток.

 $2. \qquad 0 = \vec{E}_{\textit{внутри}} = -\vec{\nabla} \, \phi_{\textit{внутри}} = 0 \qquad => \qquad \phi_{\textit{внутри}} = \textit{const} \quad - \quad \text{каждый}$ проводник в электростатике эквипотенциален.

3.
$$\begin{cases} 4\pi \rho_{\text{внутри}} = \text{div}(\vec{E}_{\text{внутри}}) \\ \vec{E}_{\text{внутри}} = 0 \end{cases} \implies \rho_{\text{внутри}} = 0 \Longrightarrow$$

В электростатике заряды проводника могут находиться только на его поверхности.

охности.
$$\begin{cases} E_{2n} - E_{1n} = 4\pi\sigma \\ \vec{E}_{\textit{внутри}} = 0 \end{cases} \implies E_n = 4\pi\sigma \text{ - нормальная составляющая }$$

поля \vec{E} над поверхностью проводника с поверхностной плотностью заряда σ , \vec{n} — нормаль, направленная из проводника наружу.

5.
$$\begin{cases} E_{2\tau} - E_{1\tau} = 0 \\ \vec{E}_{\textit{внутри}} = 0 \end{cases}$$
 => $E_{\tau} = 0$ - тангенциальная

составляющая поля \vec{E} над поверхностью проводника отсутствует.

Метод изображений.

Пусть нас интересует потенциал φ внутри объема V, граница которого является проводником. Пусть мы знаем расположение зарядов внутри объема V и знаем потенциал φ на его границе S, которая является поверхностью проводника.

Иногда удается придумать потенциал φ внутри объема V в виде суммы потенциалов точечных зарядов внутри объема V, плюс сумма потенциалов некоторых придуманных зарядов-изображений, придуманных за границами объема V.

Заряды-изображения снаружи объема V нужно придумать так, чтобы они вместе с реальными зарядами внутри объема V создавали нужный потенциал на границе $\phi|_{\mathfrak{C}}$.

Если удается придумать такие заряды-изображения, то они вместе с реальными зарядами внутри объема удовлетворяют граничным условиям задачи Дирихле. Кроме того, потенциал в виде суммы потенциалов реальных зарядов объема V и зарядов-изображений снаружи объема V удовлетворяет уравнению Пуассона $\Delta \varphi = 4\pi \rho$ внутри объема V, так как лапласиан потенциала зарядов-изображений во всех точках объема V равен нулю, а потенциал реальных зарядов объема V удовлетворяет уравнению $\Delta \varphi = 4\pi \rho$ в объеме V.

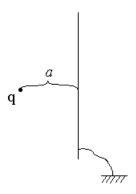
Из единственности решения краевой задачи Дирихле следует, что придуманное решение для потенциала в виде суммы реальных зарядов в объеме V и зарядов-изображений за пределами объема V является единственно возможным решением в объеме V .

Из единственности решения краевой задачи электростатики следует, что потенциал задачи с зарядами и проводниками совпадает с потенциалом задачи без проводников, но с реальными зарядами и зарядами-изображениями.

Точечный заряд над проводящей заземленной плоскостью.

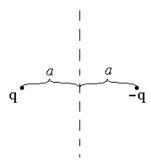
Рассмотрим задачу.

Дан точечный заряд q, расположенный над заземленной проводящей плоскостью на расстоянии a. Найти потенциал и напряженность поля в полупространстве над плоскостью.



Когда в задаче говориться, что проводник заземлен, то подразумевается, что он поддерживается под нулевым потенциалом.

Сравним эту задачу с другой, в которой нет проводящей плоскости, а вместо нее есть заряд-изображение -q, расположенный симметрично заряду q относительно плоскости.



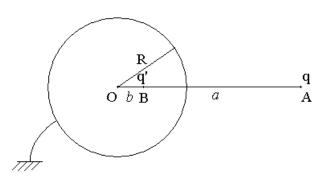
Заряд-изображение -q вместе с зарядом q создают нулевой потенциал в любой точке пунктирной плоскости. Следовательно, придуманный зарядизображение вместе с реальным зарядом создают нужный потенциал на границе объема V, в котором ищут решение для потенциала. Согласно единственности решения краевой задачи Дирихле в левой половине пространства потенциал в этих двух задачах одинаковый.

В результате поле \vec{E} и поле φ в левой половине пространства — это поля двух точечных зарядов q и -q .

Точечный заряд и проводящий заземленный шар.

Рассмотрим задачу.

Дан проводящий заземленный шар радиусом R и точечный заряд q на расстоянии a>R от центра шара. Найти потенциал φ в каждой точке пространства.



Поле снаружи шара — это поле двух зарядов: реального заряда q и заряда-изображения q', расположенного на расстоянии b от центра шара.

$$\begin{cases} q' = -q\frac{R}{a} \\ b = \frac{R^2}{a} \end{cases}$$

Потенциал этой пары зарядов удовлетворяет граничным условиям для потенциала $\phi|_S=0$. Из единственности решения краевой задачи электростатики следует, что решение задачи будет именно таким.

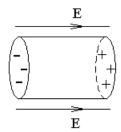
Диэлектрики.

В электрическом поле некоторые молекулы ведут себя, как жесткие диполи, например HF, другие — как наведенные диполи, например N_2 .

Жесткие диполи поворачиваются вдоль поля, а наведенные — наводятся вдоль поля.

В любом случае под действием электрического поля положительные заряды смещаются по полю \vec{E} , а отрицательные — против поля.

При смещении зарядов каждой молекулы на торцах диэлектрического цилиндра образуются нескомпенсированные заряды.



Эти заряды называются связанными зарядами.

Будем называть заряды связанными, если макроскопические заряды образуются только в результате смещения зарядов внутри каждой молекулы.

Будем называть заряды свободными, если они смещаются далеко за пределы одной молекулы.

Все заряды либо связанные, либо свободные.

Введем обозначения:

 ρ — плотность свободных зарядов,

 ρ' — плотность связанных зарядов,

 ρ + ρ ' — плотность всех зарядов.

$$\vec{P} \equiv \frac{d\vec{p}}{dV}$$
 — поляризация среды, объемная плотность дипольного момента или дипольный момент единицы объема.

Три формы трех соотношений для диэлектриков:

На микроскопическом внутриатомном уровне свободные и связанные заряды равноправны, поэтому

$$\begin{cases} div(\vec{E}) = 4\pi(\rho + \rho') \\ \oint_S (\vec{E}, d\vec{S}) = 4\pi(Q + Q') & \text{для микроскопического внутриатомного поля } \vec{E} \,. \\ E_{2n} - E_{1n} = 4\pi(\sigma + \sigma') \end{cases}$$

Под напряженностью электрического поля \vec{E} в диэлектрике будем понимать усредненное микроскопическое поле \vec{E} по макроскопическому, но малому объему. Тогда те же уравнения справедливы для электрического поля в диэлектрике.

Дополним эти уравнения следующими соотношениями:

$$\begin{cases} div(\vec{P}) = -\rho' \\ \oint (\vec{P}, d\vec{S}) = -Q' \\ S \\ P_{2n} - P_{1n} = -\sigma' \end{cases} \begin{cases} rot(\vec{E}) = 0 \\ \oint E_l dl = 0 \\ I \\ E_{2\tau} - E_{1\tau} = 0 \end{cases}$$

Здесь, как и раньше, единичный вектор нормали к границе направлен из объема 1 в объем 2: $\vec{n} \equiv \vec{n}_{1 \to 2}$.

 $\vec{D} \equiv \vec{E} + 4\pi \vec{P} = \varepsilon \vec{E}$ — определение вектора электрической индукции или электрического смещения, ε — диэлектрическая проницаемость среды.

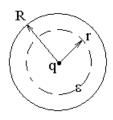
$$\begin{cases} div(\vec{D}) = 4\pi\rho \\ \oint(\vec{D}, d\vec{S}) = 4\pi Q \\ S \\ D_{2n} - D_{1n} = 4\pi\sigma \end{cases}$$

Рассмотрим задачу. Дан диэлектрический шар с проницаемостью ε и радиусом R . В центре шара находится точечный заряд q .

Найти: \vec{E} .

Решение.

В соответствии с симметрией задачи рассмотрим пунктирную сферу с произвольным радиусом r, центр которой совпадает с центром диэлектрического шара. Применим электростатическую теорему Гаусса $\Phi_D = 4\pi Q$ для поверхности выбранной сферы.



Из симметрии задачи следует, что вектор электрической индукции \vec{D} направлен по радиусу в любой точке пространства, и во всех точках пунктирной сферы вектор \vec{D} имеет одинаковую длину. Тогда

гирной сферы вектор
$$D$$
 имеет одинаковую длину. Гогда
$$\Phi_D = 4\pi Q \qquad \Longrightarrow \qquad DS = 4\pi q \qquad \Longrightarrow \qquad D4\pi r^2 = 4\pi q \qquad \Longrightarrow \qquad D = \frac{q}{r^2}$$

Этот вывод справедлив и в том случае, если $r \leq R$, и в том случае, если $r \geq R$.

Найдем теперь вектор \vec{E} из равенства $\vec{D} = \varepsilon \, \vec{E}$.

$$E = \frac{D}{\varepsilon} = \frac{q}{\varepsilon r^2}$$
 - внутри диэлектрического шара при $r < R$,

$$E = D = \frac{q}{r^2}$$
 - снаружи диэлектрического шара при $r > R$.

25. Уравнение непрерывности (закон сохранения заряда) в дифференциальной и интегральной формах.

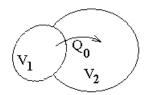
Это уравнение следует из закона сохранения заряда.

Рассмотрим силу тока, вытекающего через границу S_1 объема V_1 :

$$\frac{dQ_0}{dt} = I = \oint_{S_1} dI = \oint_{S_1} \left(\vec{j}, d\vec{S} \right).$$

Здесь Q_0 — заряд, который вытекает. Если рассматривать вместо него заряд, который остается в объеме, то производная от заряда по времени поменяет знак. Этот результат связан с законом сохранения заряда. Обсудим эту связь подробнее.

Обозначим область, в которую вытекают заряды, как объем V_2 .



За границы объема V_1+V_2 заряды не вытекают. Следовательно, по закону сохранения заряда в объеме V_1+V_2 заряд сохраняется.

Если Q_1 и Q_2 заряды в объемах 1 и 2, то закон сохранения заряда:

$$Q_1 + Q_2 = const \implies \Delta(Q_1 + Q_2) = 0$$

где $Q_0 = \Delta Q_2$ — заряд, который вытекает через границу S_1 объема V_1 .

$$\Delta Q_1 = -Q_0 \qquad \Longrightarrow \qquad \frac{dQ_1}{dt} = -\frac{dQ_0}{dt} = -\oint_{S_1} \left(\vec{j}, d\vec{S} \right) \qquad \Longrightarrow$$

$$\oint_{S_1} \left(\vec{j}, d\vec{S} \right) + \frac{dQ_1}{dt} = 0$$

Теперь в этом выражении можно опустить индекс 1. Тогда

$$\oint_{S} (\vec{j}, d\vec{S}) + \frac{dQ}{dt} = 0$$
 — уравнение непрерывности или уравнение неразрывности в

интегральной форме. Здесь Q — заряд внутри замкнутой поверхности S_1 , которую теперь естественно называть поверхностью S.

Разделим это равенство на объем, ограниченный поверхностью S , и устремим объем к нулю. Тогда получим

$$div(\vec{j}) + \frac{\partial \rho}{\partial t} = 0$$
 — уравнение непрерывности или уравнение неразрывности в

дифференциальной форме. Здесь частная производная по времени подчеркивает неизменность пространственных координат при дифференцировании по времени.

Уравнение непрерывности

$$div(\vec{j}) + \frac{\partial \rho}{\partial t} = 0$$

можно записать в ковариантной форме. И действительно

$$div(\vec{j}) + \frac{\partial \rho}{\partial t} = \frac{\partial (c\rho)}{\partial (ct)} + \frac{\partial j_x}{\partial x} + \frac{\partial j_y}{\partial y} + \frac{\partial j_z}{\partial z} = \partial_{\alpha} j^{\alpha},$$

где
$$j^{\alpha} \equiv \begin{pmatrix} c\rho \\ j_x \\ j_y \\ j_z \end{pmatrix}$$
 — это контравариантный 4-х вектор (или контравариантный тензор

первого ранга) плотности тока, так как свертка его прямого произведения с оператором ковариантной производной ∂_{α} равна нулю и, следовательно, является скаляром по группе преобразований Лоренца.

Тогда уравнение неразрывности в ковариантной форме примет следующий вид:

$$\partial_{\alpha} j^{\alpha} = 0$$
.

Строго говоря, если производная является тензором, это еще не гарантирует, что дифференцируемая величина то же тензор, но об этом на экзамене лучше не упоминать. Мы

доказали, что четверка величин $\begin{pmatrix} c \rho \\ j_x \\ j_y \\ j_z \end{pmatrix}$ если и отличается от контравариантного тензора

первого ранга, то только на величины, которые не зависят ни от времени, ни от пространственных координат (после дифференцирования по времени и пространственным координатам и после свертки получился скаляр). На бесконечности эти отличия должны обращаться в ноль, но от пространственных координат они не зависят, тогда они везде равны нулю.