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High Energy Physics

Lecture 5
The Passage of Particles through 

Matter
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Introduction
• In previous lectures we have seen examples of tracks left by 

charged particles in passing through matter.

• Such tracks provide some of the most important  
information on particles

• The main mechanism by which charged particles 
become visible is ionization

• In this lecture we shall learn more about the passage 
of particles through matter

• We begin by discussing the passage of charged particles
through matter
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The Passage of Charged Particles through Matter

• Consider a beam of charged particles travelling along parallel 
paths in vacuum and entering a region of space filled with 
matter

• Most particles will continue travelling along roughly straight paths 
and lose energy through ionization of the atoms along their paths

• Some of the particles are scattered through large 
angles: this results in loss of beam intensity 
(attenuation)

• Charged particles are either electrons or heavy charged particles: 
the lightest particle that is heavier than the electron is the muon 
whose mass is about 200 times that of the electron
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Artist’s impression of heavy particles travelling 
through matter

beam
(μ, π, p, α,…)

wide angle scatter:
beam attenuation

(of course if there is also a magnetic field, then the tracks
are bent. But for now we work in a magnetic field free medium)
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The main mechanism of energy loss is ionization.
Ignoring the atomic Binding Energy (BE), the
maximum energy loss per collision resulting in
ionization is from energy and momentum conservation
in nonrelativistic approximation

max where4 e
e

T m m m
T m

Δ � �

here  T is the initial KE and  ΔTmax the energy
imparted to an electron and hence lost by the
particle
m is the particle mass and  me is the electron
mass
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= ∫

passing particle

From classical mechanics: momentum  =  impulse
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The force  F is the Coulomb force:
2
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From our figure we have:
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at we have 0t θ= −∞ =

and at t θ π= +∞ =

and hence the  y  component of momentum acquired
by the electron is

2 2

0 00

2sin
4 4y

ze zep d
vb vb

π

θ θ
πε πε

= =∫
and the  KE  transferred from the particle to
the electron is (in nonrelativistic approximation!)

2 2e eT p m=
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Let the particle pass
through a foil of
thickness  dx,
density  ρ
atomic number  Z
mass number  A
then the number of
electrons per  cm3

is

e AN N Z Aρ=

where 23 -16.022 10 molAN = ×

is Avogadro’s number
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a cylindrical ring, concentric with the flight path of
the particle and of radius  b and width  db has a
volume given by

2dV b db dxπ=

and contains eN dV electrons

therefore the energy loss to all electrons lying
between b and  b+db is

e eT N dV=

and hence the rate of energy loss of the particle is
max

min

2
b

e e
b

dT N T b db
dx

π− = ∫
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2 4
max

2 2
0 min

1 ln
4 A

e

bdT z e ZN
dx A m v b

ρ
πε

− =

and after integration we get

Consider the limits of integration:
naively we would like to put  bmax =∞
but that would imply a minimum energy transfer
to the electron of  Te min =0, and that means that
no ionization can take place;
so we put the minimum energy transfer equal to
an average ionization potential  I, hence

2 4
2
max 2 2 2

0

1 1
8 e

z eb
m v Iπ ε

=
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bmin:  naively we would put  bmin = 0

but that corresponds to a head-on collision
in which  Fy = 0  and the impulse in  x  direction
is nonzero.

A simple estimate of  bmin is to set

2 2
max 2 max

1 2
2e e eT m v m v= =

in a head-on collisionsince 2ev v=

therefore 2 4
2
min 2 2 2 4

0

1
8 2 e

z eb
m vπ ε

=
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and hence 2
2 2
max min

2 em vb b
I

=

A more careful analysis that takes account of
QM and relativistic effects yields the following formula:

22 4
2 2

2 2
0

21 ln ln(1 )
4

e
A

e

m vdT z e ZN
dx A m v I

ρ β β
πε

⎡ ⎤
− = − − −⎢ ⎥

⎣ ⎦

where  β = v/c

This is called the Bethe-Bloch formula.
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Comments:

(i) For practical calculations it is convenient to replace
the elementary charge  e  by the fine structure
constant  α: 2

0

1
4
e

c
α

πε
=

=
α is a dimensionless number and is equal to  1/137
in very good approximation (better than 1%):

1/137.036α =
= is Planck’s constant divided by 2π and

c is the speed of light
200MeV fmc= �

( )2 2 22.13MeV fmcα ==and hence
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(ii) In nuclear physics one likes to measure the
thickness of material through which particles
pass as  ρx (in mg/cm2) (but nuclear physicists
still write  x for this quantity!)

(iii) The quantity  dT/dx is called the  stopping power of
the material; we can rewrite it in the following form:

( )
2

2
24 A

e

NdT zc B
dx m A v

π α− = =

where 2 2
2 22ln ln(1 )em cB Z

I
β β β

⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
is called the stopping number.
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(iv) At low speeds 1v c� the stopping power

is roughly inversely proportional to the square of the
particle velocity:

2

1dT
dx v

− ∝

(v) At velocities close to the speed of light the relativistic
correction gives rise to an increase of the stopping
power

(vi) Between the  1/v2 drop and the relativistic rise the
stopping power goes through a minimum: this is
known as “minimum ionization”.
The muon has a very wide, flat minimum, therefore
a minimum ionizing particle of large range is a
muon candidate.
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(vii) Average ionization potential:
This depends on the material; it is a function of the
atomic number  Z.
On theoretical grounds Bloch has shown that it is
to a reasonable approximation proportional to  Z:

where 11.5eVI kZ k= ≈

Experimental values are shown in the table below:

Z 4Be 6C 13Al 29Cu 82Pb

I (eV) 64 78 166 323 826
k(eV) 16 13 12.8 11.3 10
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(from PDT 2004)



19

Range
The range  R  is defined as the distance travelled
before the particle stops:

0

0

0 2
0

2 4
0 0

41 TR
e

AT

Am vR dx dE dE
dE dx z e N B

πε
ρ

= = =∫ ∫ ∫

For rough estimates put constB Z∼
and for nonrelativistic particles

21 hence
2

E mv dE mvdv= =

then
4
02const A mR v

Z zρ
=
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(i) Compare the ranges of two distinct particles of equal
initial velocity travelling through the same medium:

2
1 1 1

2
2 2 2

R m z
R m z

=

for instance proton and α particle:
( )4 1p pR R m mα α= �

Discussion of the Range Formula

(ii) Compare the ranges of a particle travelling in
different media  X and  Y
approximation: ignore the  Z dependence in the
log term, then

X X X X

Y Y Y Y

R A Z
R A Z

ρ
ρ

=

and if we measure the range in  g/cm2, then
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we have

( ) ( ) 1
X Y

R Rρ ρ �

setting
2A Z �

The latter approximation is good enough for rough work; for light
elements, up to iron, it is practically exact but not so good for heavy
elements:

( ) 56 26 2.2
Fe

A Z = =

( ) 207 82 2.5
Pb

A Z = =



22

In HE physics experiments one is interested in highly relativistic 
particles. Therefore the integration of the (inverse) stopping power
must be done numerically. The result is displayed in the following
figure.
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