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Gydra — GPU-based code for astrophysical SPH 
simulations

Korsunov Igor
elquendi@yandex.ru

Scientific supervisor: Prof. Dr. Kholtygin A.F., Department of 
Astronomy, Faculty of Mathematics and Mechanics, Saint-
Petersburg State University

1 Motivation
Smooth Particle Hydrodynamics (SPH) [1, 2] is a numerical technique used 

in many fields of astrophysics [3], e.g., for a simulation of cosmological structure 
formation or star and planet formation. There are some widespread and mature 
program packages that use this technique for astrophysical simulations (e.g., 
GADGET [4, 5] and FI [6-9]). This packages are well developed, optimized and 
parallelized and could be run on a single machine as well as on a cluster of com-
puters, but there is a area that still unemployed by such codes: computations with 
graphics processing units (GPUs).  

Computational ability of the modern GPUs goes far beyond the processing 
of graphics to the field of general purpose computations. They could be used for 
speeding up many types of computations, providing that parallel algorithms ex-
ist for such computations. In astrophysics GPUs could be used, for example, for 
speeding up N-body and SPH simulations. While there are GPU-based N-body 
codes for astrophysics (e.g., PhiGRAPE [10], Octgrav [11] and Bonsai [12]), niche 
for astrophysical GPU-based SPH code is still vacant. We are presenting Gydra, 
our code (currently in development) that aims to fill this niche.

2 Method
2.1 Introduction to SPH

The idea behind SPH is relatively simple: take hydrodynamical equations, 
construct integral smoothed approximations of this equations (so called kernel 
approximations), construct discretized (or particle) approximations and solve 
derived equations (possibly, taking into account external forces like gas self-
gravity or Lorentz force). Particle approximations should be reconstructed on 
every timestep.  

For example, if we have function f(x) representing some physical quantity at 
the position x, kernel approximation of this function and it’s derivative would take 
the following form

 
( ) ( ) ( )f x = f x' W x x',h dx'

Ω

−∫ (1)

( ) ( ) ( )f x = f x' W x x', h dx'
Ω

∇ − ∇ −∫
  

(2)
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where W(r,h) is a so called smoothing function or kernel (h is a parameter of this 
function, so called smoothing length). Smoothing should satisfy several properties, 
one of which is a compact support, i.e., smoothing function should drop to zero if 
r > nh, where n is a small number, usually around 2 or 3. This property essentially 
means that the state of particle is affected only by it’s nearest neighbours.  

One of the most widely used smoothing functions is a cubic spline of the fol-
lowing form: 

( )

2 3

3

2 1 0 1,
3 2

1 2 1 2
6

d

r r r+ if <
h h h

W r,h
r rif <
h h

    − ≤        = α  
  − ≤    

(3)

Particle approximation of the f and it’s derivative would take the following 
form: 

 
( ) ( )

1

N
j

i j ij
j= j

m
f x = f x W

ρ∑ (4)

  
( ) ( )

1

N
j

i j i ij
j= j

m
f x = f x W∇ ∇

ρ∑ (5)

  where 

( )  ij i jW = W x x ,h− (6)

  i j ij
i ij

ij ij

x x W
W =

r r
− ∂

∇
∂

(7)

  So, if we take Navier-Stokes equations in the following form 

 

  

1

2

D = v
Dt
Dv =
Dt x

De p v= +
Dt x

α αβ

β

β
αβ αβ

β

ρ
−ρ∇

∂σ
ρ ∂

∂ µ
− ε ε

ρ ρ∂

(8)

where σαβ is a total stress, μ is a dynamic viscosity and εαβ is a strain rate, particle 
approximation would look like 
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(9)

  As can be seen, Navier-Stokes equations are turned from PDE to ODE and now 
could be easily solved using any numerical technique for ODE integration like 
leapfrog or Runge-Kutta methods 

2.2 High-level algorithm
General outline of the Gydra’s algorithm is following:

1. Construct octree from particle positions
2. Calculate gas self-gravity via Barnes-Hat algorithm [13]
3. Construct particle approximation of Navier-Stokes equations
4. Solve ODEs for one step
5. Adjust particle properties
6. Repeat

 Octree is a spatial data structure that enables efficient queries for all particles 
in the given volume and for N nearest neighbours of the given particle. Octree 
allows us to utilize compact nature of SPH (due to the compact support of the 
smoothing function) and to replace summation by all particles in the discretized 
form of Navier-Stokes equations  with summation by the particles inside support 
domain of the given particle.

3 Notes about implementation
3.1 Tools and technologies used

We choose to implement our code in NVidia CUDA for GPU part and C++ 
for host (CPU) part. Also we use some libraries like Thrust (collection of parallel 
algorithms for CPU and GPU) and Boost (collection of general purpose tools for 
C++).  

Author believes that code without tests either broken right now or would be 
broken soon by future changes, so he uses Google Test and Google Mock frame-
works for testing and tries to keep test coverage as high as reasonable. 

3.2 Peculiarities of GPU programming
GPU programming model has some significant differences from the traditional 

CPU model. First of all, GPUs are massively parallel devices with the ability to 
run several thousands of threads simultaneously. Second important feature of GPU 
programming model is a separate memory of host (CPU) and device (GPU) and 
relatively low speed of host-to-device (and vice versa) memory transfers.  

Therefore, in order to fully utilize computational power of GPUs, one should 
use parallel algorithms and data structure representations, even in the cases where 
serial implementations seems more natural. For example, natural algorithm for 
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octree are recursive serial procedure and natural representation of octree is also 
recursive (node with pointers to the child nodes/subtrees). But for GPU we should 
take another approach and construct pointerless representation of octree with the 
help of space-filling curves [14]. We also trying to keep the number of host-to-device 
and device-to-host memory transfers as low as possible, moving all significant 
computations to the GPU side.

4 Current status and conclusions
Currently, Gydra could not be called full-fledged SPH solver. Now we are 

working on the parallel octree construction [14] and there is a plenty of thing that 
should be done, like implementing parallel nearest neighbour search or parallel 
Barnes-Hut algorithm [12]. But the results obtained so far show that the idea of 
implementing SPH for GPU is reasonable and feasible task.
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Photometry and polarimetry of supernovae performed 
on telescopes LX200 and AZT-8

Mokrushina Anna
hobbitenka1608@rambler.ru

Scientific supervisor: Dr. Larionov V.M., Department of 
Astrophysics, Saint-Petersburg State University; The Central 
(Pulkovo) Astronomical Observatory of the Russian Academy of 
Sciences

Introduction
Supernovae are an important object of research, because in the process of ther-

monuclear synthesis they form the diversity of the chemical elements that make 
up the rest of the objects in the universe. Their study helps to understand better 
the evolution of matter in the universe. The relevance of the study of these objects 
supports the recent discovery of the accelerated expansion of the universe, made 
as a result of the study of supernovae. 

Two supernovae, 2013ej (type IIP) and 2014J (type Ia), were taken for pres-
ent work. Observations, processing and analysis of the data obtained were made 
of these supernovae. As a result of observations there were made plots the light 
curves, the analysis of which allowed to calculate the following physical parameters: 
bolometric luminosity, bolometric correction, the mass ejected in the explosion of 
a nickel, the explosion energy, the mass of the ejected shell radius of the star - the 
progenitor, the temperature distribution and the radius of the photosphere, depend-
ing on the time, estimate of the distance to the supernova. Both supernovae have 
shown a fairly high degree of polarization, which may indicate a large asymmetry 
of the explosion.

Results and Discussion
Observational data were obtained, employing two telescopes: LX200 and 

AZT-8. LX200 (D = 0.4 m, F = 4064 mm, field of view: 14.3′ x 9.5′, optical scheme 
is Schmidt-Cassegrain) is located at St. Petersburg State University, in Peterhof, 
50 m above sea level. AZT-8 (D = 0.7 m, F = 2820 mm, field of view: 8.1′ x 5.4′, 
camera is situated in the main focus of a parabolic mirror) is located at the Crimean 
Astrophysical Observatory, in settlement Nauchny, 600 m above sea level.

Observations were carried out using identical CCD cameras ST-7 XME 
equipped with CCDs based on the crystal KAF-0402ME. Its sensitivity maximum 
is near the line Hα. Dimensions of the matrix is 765 x 510 pixels (pixel size is 9 x 
9 mkm). For polarimetric observations used two plates Savar.

Photometry of summed frames was made at package PHOT. This package was 
developed by Larionov V.M. based program SExtractor (author E. Bertin).

SN2013ej
Supernova 2013ej flushed on July 25 in the galaxy M 74 with the following 

coordinates: R.A. = 01h36m48s.16 , Decl. = +15⁰45′31′′.0.
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After the data processing the light curve in four filters (B,V,R,I) was con-
structed. It is shown in Fig. 1(a) with color dots. Black dots denote the data from 
the article [1].

Fig. 1. a) Light curve of SN2013ej in four filters; b) Light curves of type IIP su-
pernovae in the filter R. 

As seen from the figure, colored and black dots are in good agreement with 
each other. Fig. 1(b) shows a comparison of the light curves in the filter R of 
studied supernova and other supernovae of the same type. As typical for type II 
supernovae, the forms of light curves are markedly different from each other. The 
plateau phase of SN2013ej ends much earlier than other supernovae. It is usually 
associated with a relatively small size of the progenitor star [1]. 

Bolometric light curve (Fig. 2a) was constructed [2]. It characterized the total 
radiation of the star at all of the bands with the absorption, also was calculated the 
bolometric correction BC ≈ -1.92±0.13 mag.

Fig. 2. a) The bolometric light curve of SN2013ej; b) A comparison of bolometric 
curves SN2013ej with other supernovae of the same type.

The bolometric luminosity peak of SN2013ej reached on the 11th day after the 
explosion, Lbol = 1042.59±0.05 erg/s (which is typical for SNe IIP [2]).

The ⁵⁶Ni mass ejected in the explosion was calculated, М(⁵⁶Ni) = 0.041±0.001 
M⨀. For SN2004et M(56Ni) = 0.057± 0.03 M⨀ [2].

Estimation of the energy of the explosion was found as E = 1.15±0.4×1051 erg, 
also estimation of the mass of the ejected shell in the explosion, M = 13.96± 4.47 
M⨀, and radius of the progenitor star, R = 164± 34 R⨀. The method is described 
in article [3].



12

Changes of temperature and photosphere radius were calculated (Fig. 3).

Fig. 3. a) Temperature change of SN2013ej; b) Photosphere radius change of 
SN2013ej.

Distance to the supernovae was calculated by the method proposed in [4]. 
D =9.77±0.88 Мpc. 

Results of polarimetric data processing are shown in Fig. 4.

Fig. 4. The polarization parameters for SN2013ej: a) The degree of polarization; 
b) Direction of preferred oscillations of the electric vector.

To the emergence of polarization can lead non-sphericity [6] and large emissions 
of matter overlapping from us scatter electrons, as well as radiation scattering by 
inhomogeneities of previously discarded the shells.

SN2014J
Supernova 2014J flushed on January 16 in the galaxy M 82 with the following 

coordinates: R.A. = 09h55m42s.14, Decl. = +69⁰40’26’’.0.
Light curve in four filters is shown in Fig. 5.
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Fig. 5. a) Light curve of SN2014J in four filters; b) Light curves of Ia SNe in filter R. 
Similar to the previous SN, processing results and data from the article [7] are 

shown with color and black dots, respectively. Very good agreement between these 
data is observed again. SN2014J has a typical light curve of type Ia.

Bolometric correction for this SN was found ВС⋍-1.79±0.31 mag. Bolometric 
light curve is shown in Fig. 6.

Fig. 6. a) Bolometric light curve of SN2014J; b) Comparison of bolometric light 
curves SN2014J and other SNe of the same type.

Maximum of Bolometric luminosity reached on the ~ 17th day, LgL(t) = 43.24±0.12 
erg/s, which is typical for SNe Ia.

Dependence of temperature from time (Fig. 7a) and the change of photosphere 
radius (Fig. 7b) were estimated. 

Fig. 7. a) Temperature change of SN2014J; b) Photosphere radius change of 
SN2014J.

Estimation of the distance to the photometric formula [5] showed the re-
sult D = 3.83±1.15 Mpc. Distance to the galaxy M82 in the database NED is 
3.777 Mpc.

Ia supernovae in most cases have a small polarization. Polarization of SN2014J 
was much greater than the average values for other SNe, it reaches 6-7% at the 
maximum (Fig. 8a).
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Fig. 8. The polarization parameters for SN2014J: a) The degree of polarization; 
b) Direction of preferred oscillations of the electric vector.

A large degree of polarization indicates a large asymmetry and heterogeneity 
of the structure of the inner layers.

Conclusion
Observational data on SN2013ej and SN2014J have been received, processed 

and analyzed. Processing showed results consistent with those data obtained earlier 
for other SNe. Data analysis made it possible to determine the following physical 
parameters of SNe:

For the SN2013ej: Lbol(max) = 1042.59±0.05 erg/s, BC≈-1.92±0.13 mag, М(56Ni) 
=0.041±0.001 M⨀, Energy of the explosion = 1.15 ±0.4×1051 erg, Mass of the 
ejected shell = 13.96± 4.47 M⨀, Radius of the progenitor star = 164±34 R⨀, 
Distance to the SN = 9.77± 0.88 Мpc. Distribution of temperature and photosphere 
radius versus time was obtained.

For the SN2014J: Lbol(max) = 1043.24±0.12 erg/s, ВС ⋍ −1.79±0.31 mag, D = 
3.83± 1.15 Mpc. Distribution of temperature and photosphere radius versus time 
was obtained.

Both supernovae showed a fairly high degree of polarization. This may indicate 
a large asymmetry of explosion [6].
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Correlation of radial fluctuations in deep galaxy redshift 
surveys

Shirokov Stanislav
arhath.sis@yandex.ru

Scientific supervisor: Dr. Baryshev Yu.V., Department of Astronomy, 
Faculty of Mathematics & Mechanics, Saint-Petersburg State 
University

Introduction
One of the most important problems in modern observational cosmology is 

to determine the maximal size of large-scale inhomogeneities in distribution of 
galaxies in the Universe. As it is known the Sloan Digital Sky Survey shows that 
at small redshifts there are inhomogeneous structures, for example, Sloan Great 
Wall with a size of 400 Mpc/h. Today the background exists that there are similar 
and larger structures at large redshifts. In addition, if we really see inhomogeneous 
structures at large redshifts then there should be correlation of these structures 
between independent surveys of different research groups. For these purposes a 
comparison of radial fluctuations in two deep galaxy redshift surveys (COSMOS 
[1] and UVISTA [2]) that are belong to one field is considered.

Fig. 1. The galaxy distribution of Sloan Digital Sky Survey. The COSMOS deep 
field with the size of one square degree marked as the black beam In the picture. 
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Methods
A cosmic variance is a possible estimate of inhomogeneity structures. The 

method first proposed in [3] of estimation of sizes and amplitudes of radial fluctua-
tions for different redshift bins was used. 

The following uniform distribution approximation formula was used
	

∆ N mod ( z )= Azα exp (− z
z0
)
β

∆ z ,
	

(1)

where A is a normalization  parameter and α, β, z0 – the free parameters for least 
squares. The deviation of the observed number of galaxies from the model,
	 δobs( z ,∆ z )=

∆ N obs− ∆ N mod

∆ N mod
, 	 (2)

provides an estimate of the total fluctuation dispersion, σ = |δobs|, that is a cosmic 
variance. The theoretically expected relative fluctuations variance of the number 
of galaxies [4-6] is given by 
	 σ 2( z ,∆ z )= σ corr

2 + σ P
2 , 	 (3)

where σP is Poison's noise (σP ~ 1/N0.5) and σcorr is a cosmic variance of correlation 
structures given by

σ corr
2 (V , r 0,γ )= 1

V 2∫ V
dV 1∫ V

dV 2ξ ( |r1− r2 | , r 0,γ ) , (4)

where ξ(r) = (r0/r)
γ is a density correlation function of a spatial galaxy distribu-

tion, r0 and γ are its parameters. The shape of the correlation function determines 
observed inhomogeneities [4].

Fig. 2. The approximation of the real radial distribution of the number of galax-
ies by a uniform (homogeneity) distribution is shown. The gray areas are regions 
of deficiency or excess of the number of galaxies.
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For a comparison of radial fluctuations of the different galaxy samples the 
Pearson's correlation coefficient was used
	

r corr=
cov XY
σ X σ Y

=
Σ ( X − X ) (Y− Y )

√Σ ( X − X )2Σ (Y − Y )2
,

	
(5)

where X, Y – the sample's means. The correlation coefficient error in the case of 
n < 50,
	 σ r=

√1− r2

√n− 2
, 	  (6)

and its authenticity P according to Student's table were calculated.
Results and Discussion

Δz rcorr σr P

0.1 0.54 0.12 0.999

0.2 0.59 0.16 0.99

0.3 0.79 0.12 0.999

Table 1. The correlation coefficient, rcorr, its 
error, σr, and its authenticity, P, for the red-
shift bins Δz = 0.3, 0.2, 0.1.

Fig. 3. The relative number density fluctuation of COSMOS and UVISTA for Δz = 0.2 
is shown (for computation of correlation coefficient all graph's points were used).
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Conclusion
We can make the following conclusions:
a) In the deep COSMOS field there are fluctuation of the number of galaxies at 

redshift z ~ 2 with amplitude 20% and the linear dimension ~ 1000 Mpc.
b) The independent surveys of the COSMOS field are consistent in the ampli-

tudes and the linear dimension of inhomogeneities with the correlation coefficient 
rcorr ~ 0.7.

c) The observed fluctuations of the number of galaxies may be explained by the 
power-law correlation function ξ = (r0/r)

γ with parameters r0 = 10, γ = 1.
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Andronov-Hopf bifurcation of one or more cycles in the 
Mackey-Glass type delay differential equation

Ignatenko Vera
veraignatenko93@gmail.com

Scientific supervisor: Prof. Dr. Reitmann V., Faculty of Mathematics 
and Mechanics, Saint-Petersburg State University

1. The Mackey-Glass model
We consider the parameter-dependent model of Mackey-Glass with time-delay 

nonlinearity [1]. Such a model describes the process of blood cell production and 
can be written as

( ) ( )
( )

0( ) ,
m

m m

x tdx t ax t
dt x t

β ϑ − τ
= − +

ϑ + − τ
(1)

Where β0, ϑ, m, a are positive constants. Here x(t) is the density of mature 
circulating cells in blood, ax(t) is the mortality rate,

0 ( )
( )

m

m m

x t
x t

β ϑ − τ
ϑ + − τ

is the blood cell reproduction rate. There is a significant delay τ>0 between the 
initiation of cellular production in the bone marrow and the release of mature cells 
into the blood. Periodic solutions in (1) are associated with chronic and acute human 
diseases, for example, chronic myelogenous leukemia. The existence of periodic 
solutions for time-delay systems based on bifurcation theory was considered in 
[2, 3]. In difference to these papers we consider the degenerate Andronov-Hopf 
bifurcation in (1).

2. Standard Andronov-Hopf  bifurcation
At first we give a short review of the standard Andronov-Hopf bifurcation. Let 

us consider the system with bifurcation parameter α 

( ), .x f x= α (2)

Assumptions:
(A1)  f : n×→n is a real-analytic function;
(A2) x=0∈n is a stationary point at α=0  for (2), i.e. f(0,0,)=0;

(A3) (0, 0)f
x

∂
∂

has a pair of complex conjugate eigenvalues λ1= λ̅2 =i and n-2 
                              eigenvalues λj with Re λJ≠0 .
The normal form of system (2) in polar coordinates is given by

( )
( )

3
1

' 2
21

 ,       
1  .

r r r
ImA r

 = α + σ α +…
 θ = + α +…




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Here we assume that the first Lyapunov number σ1(0)≠0. The coefficient 
ImA21′(α) can be computed from equation (2). The description of the standard 
Andronov-Hopf bifurcation is given in [2, 4] and other books.

3. The first Lyapunov number for the Mackey-Glass equation
Using center manifold theory and the reduction principle [4, 2] we can get 

conditions for bifurcation parameters and can compute the first Lyapunov num-
ber and some coefficients  gijwhich are used for the Poincaré normal form for the 
Mackey-Glass equation (1):
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In analogous form we can compute E1  and E2.
Conditions for parameters which guarantee the spectral properties:
1)	 β0>α,
2)	 (m-2) β0 -mα>0.

Theorem: Assume that the coefficients in the Mackey-Glass equation (1) β0, ϑ, m, 
a are such that the first Lyapunov number is zero, i.e. σ1(0)=0. Then a degenerate 
Andronov-Hopf bifurcation in (1) may occur.
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4. Degenerate Andronov-Hopf  bifurcation
Now we discuss the principal properties of the degenerate Andronov-Hopf 

bifurcation. We consider system (2) under the following additional assumptions: 
the first Lyapunov number is zero, i.e. σ1(0)=0; the second Lyapunov number is 
nonzero, i.e. σ2(0)≠0 (for example σ2(0)= -1). 

The reduced system in polar coordinates is given by
	 3 5

1 2
2 4

1 2

 ,
1  .

r r r r
b r b r

 = α + α − +…
 θ = + + +…




	

Here b1, b2 ∈  are fixed parameters, (α1, α2) ∈ Ω ⊂ 2 are the bifurcation param-
eters, Ω is a neighborhood of (0, 0). Note that a second parameter is introduced in 
order to describe the degenerate bifurcation.
We consider limit cycles, which are determined by the relation
	 3 5

1 20  .r r r= α + α − +… 	
We have two schemes for the creation of limit cycles:

1) r>0, r is small and α2≠ 0:
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2) r>0 and r is large:
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Now we can investigate the decomposition of Ω:
( ) ( ){ }1 2 1 1 2 1 ( ,   ) , 0i ∞ α α ∈Ω = α α ∈Ω α > .

a)	 α2<0. A limit cycle exists according to the first scheme (Fig. 1).
b)	 α2≥0. A limit cycle exists according to the second scheme (Fig. 1).

Fig. 1. Super critical Andronov-Hopf bifurcation.

	 ( ) ( )
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4
ii
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∞ α α ∈Ω = α α ∈Ω α > α < + α > 

 


.

The limit cycle  γ1 exists according to the first scheme, the limit cycle γ2 exists 
according to the second scheme (Fig. 2).

Fig. 2. Two limit cycles – large and small.
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 There exists only a stationary point (Fig. 3).

( ) ( ){ }1 2 1 1 2 1( ,   ) ,  0iv S∞ α α ∈ = α α ∈Ω α = . In this domain a super critical 
Andronof-Hopf bifurcation occurs (Fig. 4).

 Here a semi stable limit cycle 
is created (Fig. 5).

5. Conclusions
•	 The standard Andronov-Hopf bifurcation for the Mackey-Glass equation 

is considered.
•	 Conditions for the Andronov-Hopf bifurcation in the degenerate case 

are discussed. This degenerate case leads to the bifurcation of two cycles in the 
system.
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Fig. 4. Super critical Andronov-Hopf bifur-
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Introduction
Nonlinear parabolic equations arise as mathematical models of various phe-

nomena in physics, biology, financial mathematics and other fields. The problem 
to solve nonlinear parabolic equations is one of the most difficult and at the same 
time interesting problems of computational mathematics. There exists no single 
universal algorithm for solving this type of problems. As a rule, each of these 
problems requires its own unique approach. Simple problems for partial differen-
tial equations in some cases can be solved by analytical methods, discussed in the 
relevant sections of mathematics. However, in most cases such problems can’t be 
solved analytically and hence needs numerical schemes to solve them, in particular, 
the probabilistic numerical schemes.

To construct a required scheme to get a solution of the Cauchy problem for 
a nonlinear parabolic equation one can use at least two different approaches to 
obtain the probabilistic representation of its solution based on the solution of the 
corresponding stochastic differential equations.

The problem statement
Consider the Cauchy problem for a quasilinear parabolic equation

	 2 21 ( ) ( ) ( , , ) = 0,
2

u A x u a x u g x u u
t

∂
+ ∇ + ∇ + ∇

∂
	 (1)

	 ),(=),( 0 xuxTu 	 (2)
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x
uuRuuxgRxARxaRxtuTtRx

∂
∂=∇∈∇∈∈∈∈∈ ,),,(,)(,)(,),(],,0[, 11111

We aim to construct and implement a numerical algorithm for solving (1) with 
the Cauchy data (2) based on a probabilistic representation of its solution.

Probabilistic approach to solution of the Cauchy problem
Consider a Cauchy problem for a semilinear parabolic equation
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2
1 22 uxguxauxA

t
u +∇+∇+

∂
∂ 	 (3)

	 .)(=),( 0 xuxTu 	  (4)
It is known [1] that we can use a system
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to construct u(t, x). Here )(θw  is a standard Wiener process.
This approach can be extended to construct a solution of the Cauchy problem 

(1), (2). To this end we have to consider a system of the form
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since we can get a system of the form (5) from system (6), using the method of 
differential prolongation.

To explain an alternative approach [3] we assume that u is a classical solution 
of the Cauchy problem (1), (2). Then we can apply Ito’s formula and compute a 
stochastic differential of the process u(θ,ξ(θ)) 
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Since u solves (1), we get
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is called a weakly coupled FBSDE (forward and backward stochastic differential 
equation). Here
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By definition a solution of (8) is a triple of 
1tF  – measurable stochastic processes 

(y(t1),z(t1),ξ(t1)) such that with probability 1
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Consider a condition С.1.
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Assume that f: Ω×R1 ×R1→ R1 possesses the properties
1).  f(y, z) is progressively measurable and square integrable for all (y, z) ∈ 
R1×R1;
2).  There exist constant µ and K1, L1 such that

 ,,|],||[||),(| 11
1 RzRyzyKzyf ∈∈+≤  P – a. s.;

3).  ,,,|,||),(),(| 1
1

1
111 RzzRyzzLzyfzyf ∈∈∀−≤−  P – a. s.;

4).  2 1 1
1 1 1 1( )( ( , ) ( , )) | | , , ,y y f y z f y z y y y y R z R− − ≤ µ − ∀ ∈ ∈  P – a. s.;

5).  The map ),( zyfy →  is continuous for any z P – a. s.
Under these assumptions the solution of the system (8) is known to exist and the 
function u(t,x) = y(t) stands for a viscosity solution of the problem (1), (2).
Theorem [3]. Assume C.1. holds and (y, z) is a unique solution of FBSDE (8). Then 
u(t,x) = y(t) is a unique continuous viscosity solution to (1), (2).

Numerical solution of FBSDEs
One can discretize FBSDE (8) and obtain the following relations [4]
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Here (X, Y, Z) is a discrete solution of (8), 

	 , , 0,1,...,i
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= = = ,	

m is a number of iterations and 
iii www −=∆ ++ 11 .

Here 
itE  denotes the conditional expectation |

it
E F ⋅  and 

itF  is natural filtration, 
generated by Wiener process. In this way we construct an approximate solution 
of the system (8).

To simplify this scheme we approximate a Wiener process
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{ } { }1 1 0.5n n
j jP Pε = = ε = − = .

Then a discretized form of FBSDE (8) can be rewritten as follows
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i

mn
iYY . 

Simulation of BSDE solutions
For simplicity set ξ(θ) ≡ w(t) ∈ R1 and T=1. To obtain numerical results we 

choose u0(x) = cos(x), g(t, y, z) = -yz, where x∈ R1.
The numerical results are presented in Figs. 1-2.
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Fig. 1. BSDE solution y(t). Fig. 2. BSDE solution z(t).
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Introduction
Differential equations as well as stochastic differential equations and their vari-

ants appear in many scientific fields including mathematical finance, physics and 
chemistry, more precisely high-dimensional systems of such equations, which is 
why numerical solutions for them are of a significant practical use. The proposed 
method includes technique as follows: 

•	 Let us convert a system of differential equations into an integral one
•	 Apply Monte Carlo Method to a system of integral equations (using a 

scheme based on a branching process for a non-linear case and using collision 
estimate for a linear case)

•	 Obtain numerical estimation of a solution
In this report the introduced technique is going to be applied to a Riccati 

equation.

Method
Let us consider a system of differential equations

1( , ,... ),m
dX F t x x
dt

=

where X(t)=(x1(t),…, xm(t))  – vector of variables and F(t, x1,…, xm) = (f1,…, fm) – 
vector function

Consequently,
	

1( , ,... ),m
dX X X F t x x
dt

+ Σ = Σ + 	 (1)

Σ– matrix m×m.
Inverse of the system (1) by using a formula with the integrating factor

	

 

0 0
1

0

( ) ( , ,..., )

t t
td d

mX t e e F x x d
− Σ τ Σ τ∫ ∫

= τ τ∫
	

Assuming that F is a smooth function of x1,…, xm and computing a first-order 
Taylor series expansion we could obtain a polynomial nonlinear system which has 
been examined thoroughly and in accordance to [1] and [2] is solved by simulating 
a vector branching process.
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We have	
	 	

(2)

or

Suppose that fixed-point iteration converges 

converges for both the equation (2) and the following equation

where  is obtained by swapping kernel K for |K|.
Conditions necessary for Monte Carlo Method require that majorant process 

converges, and according to existence theorem for solution of system of ODE this 
is true in case the interval of integration ∆t chosen for time is sufficiently small. 
Thus, we can find the solution in any interval [0,T] by splitting it up consequently 
in intervals of length ∆t .

Numerical example 
In order to explain this algorithm in detail let us provide a simple example. 
We want to find a solution of

In x0=0.2 using a collision estimate. 
We have

Therefore,

where 

We are going to simulate N Markov paths , each would end in absorption 
at t=τ or in case the argument of y is in an ε - neighbourhood of an initial point 0 
and therefore the value of y in that point can be changed for y(0)=1. At each step of 
the Markov path we simulate a random variable α that has the uniform distribution 
on the interval [0,1]. Absorption happens when α becomes less than the probability 
of absorption which is defined by the constant number of 0.25. 



31

…

Collision estimate 

After solving the equation analytically we have y(0.2)=1.4947. 
N Collision est
25 1.3807
50 1.4961
100 1.5013
1000 1.4941
y(0.2) 1.4947

Considering that the standard deviation doesn’t exceed 30% in all of the inves-
tigated cases we are satisfied with the algorithm. 

Conclusion
Although the theory concerning Monte Carlo Methods for polynomial nonlinear 

equations is quite well-studied in the works of Ermakov S.M. [1, 2], no applications 
for differential equations have been introduced yet. In this report we have attempted 
to provide such. The far-reaching plan is to try to apply the aforementioned tech-
nique to the case of a system of a stochastic differential equations.
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Introduction
The first hypervelocity star was opened in 2005 by W. Brown et al. Now there 

are known about twenty such objects but their origin still remains unclear. The most 
probable scenario of their origin was proposed long before their observations: in 
1988 by J. Hills [1]. He suggested that as a result of interaction between a close 
binary system and the supermassive black hole: one of the components can fly 
away at high speed (about several thousand kilometers per second).

In the present work the motions of a star after this interaction were studied. 
1 000 variants of the initial velocities were considered for three different initial 
approaches of a binary system with a black hole, star motion equations were inte-
grated by Runge-Kutta method of fourth order.

Results and Discussion
The aim of the work was to study the motions of the stars in the regular field of 

the Galaxy after the escape from the central region. A star was placed at the distance 
of 1 pc from the Galactic center; a speed and an angle of the initial velocity to the 
Galactic plane were fixed. The system of the star motion equations

ẍ= − ∂ Φ( x , y , z)/∂ x
ÿ=− ∂ Φ( x , y , z)/∂ y
z̈=− ∂ Φ( x , y , z)/∂ z

,

was numerically integrated by the Runge-Kutta fourth-order method. Calculations 
achieved 150 million years (due to the characteristic lifetime of the B stars on the 
main sequence – such objects are often observed as high-speed) or departure from 
the center of the Galaxy at 120 kpc (the approximate size of the Galactic halo) 
were performed.   

Three different form of the gravitational field potential of the Galaxy were 
considered: Irrgang et al. [2], Fellhauer et al. [3], and Gardner et al. [4] models.

For example, model [3]:
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In all models the potential is represented by the sum of three galactic component 
potentials: disk, bulge, and halo; in [4] the disk is separated into stellar and gas-dust 
components and those consist of several terms. The potentials of all three models 
have a rotational symmetry. Since the star departs almost from the center of the 
galaxy, its orbit will be in the plane perpendicular to the Galactic plane.

The results of numerical modeling (Table 1) show that model [2] allocates at 
higher speeds: lift height and maximum distance from the galactic axis of rotation 
several times more than in other models.
Table 1. The maximum height and maximum distance from the axis of rotation of 
orbits in units d=10 kpc for initial speeds 300 and 600 km/s and angles of initial 
velocity inclination with respect to the galactic plane 0°, 30°, 60°, and 90°.

Height Distance

Model v0 0° 30° 60° 90° 0° 30° 60° 90°

[2] 300 0 0.014 0.023 0.027 0.02 0.027 0.027 0.026

[3] 300 0 0.010 0.016 0.018 0.018 0.018 0.018 0.018

[4] 300 0 0.018 0.032 0.037 0.038 0.037 0.035 0.034

[2] 600 0 0.499 1.000 1.166 1.265 1.265 1.265 1.265

[3] 600 0 0.214 0.205 0.216 0.276 0.274 0.249 0.274

[4] 600 0 0.297 0.297 0.311 0.616 0.616 0.616 0.616

The next step is the addition of the point potential of the central black hole of 
107 solar masses to the model [3]. The potential gets the new part: 
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( )
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2 2
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As you can see from the Fig. 1, the black hole significantly affects the star 
movement: an orbit that was lying in the galactic plane becomes chaotic – this is 
due to calculation errors during close encounters of a star with a black hole. Orbits 
become more compact.



34

Motions of stars ejected from the Galactic center as a result of the interaction 
of a close binary system and the supermassive black hole have also been simulated 
according to calculations made in [5]. The sample of departure velocities for dif-
ferent approaches of double star and the black hole were taken from [5], ejection 
angles were chosen randomly.

Fig. 2 shows the distribution of a tangent of orbit initial inclination angle and 
the star initial velocity for three encounter options: 100, 500 and 3000 solar radii. 
Red color means escaping stars, green corresponds to remaining stars. It is seen 
that with increasing distance of approach the points cloud moves to the left that 
means rising the number of remaining stars. The boundary value between outgoing 
and remaining stars equals about 1200 km/s in all three cases. The proportions of 
escaping from the Galaxy stars are approximately 80, 70 and 50 percent. 

The following graphs are shown for remaining stars only. 
In the Fig. 3 for all three options is clearly visible the rapprochement depen-

dence: at the beginning the graph is flat, and then it rises sharply. Most likely this 
is due to the galactic disk influence. 

Fig. 1. Orbits in red color are in the model without black hole, green – with it. 
Initial conditions: speed is 600 km/s, angles between initial velocities and the ga-
lactic plane are 0, 60 and 90 degrees.

Fig. 2. The dependence of the initial orbit inclination tangent on the initial speed 
of stars (in units v=100 km/s) for approach distances of 100, 500 и 3000 solar ra-
dii. Red color means escaping stars, green color means remaining stars.
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Fig. 4 shows the dependence of the orbit flattening on the initial speed. For 
speeds smaller than 600 km/s is the clear upper boundary equals to unity, it is also 
most likely due to the galactic disk influence. With increasing distance of approach 
relative orbit heights rise. 

Let’s consider the dependence of the maximum lift of the orbit on the initial 
speed (Fig. 5). There is a general pattern for all occasions: for the initial velocities 
of less than 600 km/s the plot is flat, then it increases with the overall envelope on 
the left, it is also probably explained by the influence of the galactic disk.

Fig 3. The dependence of maximum galactocentric distances on initial speeds for 
approach distances 100, 500 и 3000 solar radii .

Fig. 5. The dependence of the maximum height of the orbit on the initial speed of 
the star for the approach distances of 100, 500 и 3000 solar radii.

Fig. 4. The dependence of the orbit flattening on initial speeds for approach dis-
tances of 100, 500 и 3000 solar radii.
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Conclusions
We can make the following conclusions:
a) The type of orbit of a star ejected from the Galactic center essentially depends 

on two parameters: the ejection speed and the angle between the initial velocity 
and the galactic plane.

b) The central supermassive black hole has a strong effect on the motion of 
stars in the central region; the orbits become more compact.

c) The percent of stars escaping from the Galaxy rises with decreasing the 
distance of approach between a binary system and a black hole.

d) The boundary value between the ejecting speeds of escaping vs. remaining 
stars is approximately equal to 1200 km/s and does not depend on the angle between 
the initial velocity and the Galactic plane.
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Introduction
A dynamical system with multiple time (DSMT) is a generalization of a standard 

dynamical system, i.e. a system with one dimensional time. Such DSMT may be 
generated by partial differential equations and Pfaffian systems. They have applica-
tions in differential geometry, mathematical physics and other fields [1].

For standard dynamical systems special outer Caratheodory measures are 
constructed in [2, 3]. These outer measures give the opportunity to estimate 
Hausdorff measures and the Hausdorff dimension of attractors for standard dy-
namical systems. 

We use analogous methods for the construction of a Caratheodory structure in 
the form of so called containers for dynamical systems with multiple time [4].

Dynamical systems with multiple time
Let us involve some definitions. Let (M, p) be a metric space. We will consider 

T = Rk as set of time parameters.
Definition 1: Let {ϕ t}r∈Rk

 be a set of continuous maps ϕ r:M→M. The pair 
({ϕ t} r∈Rk, ((M, p)) is called dynamical system with multiple time on the metric 
space (M, p) if the following conditions are satisfied [1]:

1.	 ϕ 0(p)=p for any p∈M.
2.	 ϕ s(ϕ t(p))= ϕ t+s(p) for any t, s ∈ Rk, p ∈ M.

Definition 2: For any p ∈ M the set 
y(p):={ϕt(p)|t ∈ Rk}

is the orbit of the dynamical system with multiple time through the point p.
Definition 3: The set A⊂ M is called [positively] [negatively] invariant if ϕ t(A)
[⊂][⊃]=A for any t ∈Rk.

Generators for systems with multiple time
Let M=Rn and X⊂ Rn. Hom(Rk,Rn) is the vector space of bounded linear maps, 

f:X → Hom(Rk,Rn) continuous map. We consider the equation
	 dxt= f(t, x(t))	 (1)
Where dxt is the differential of the smooth map x: Rk→ X at the point t. The follow-
ing criteria of complete integrability are given by the Frobenius theorem [1].
Theorem 1: Equation (1) is completely integrable if and only if for any x∈X the 
bilinear operator
	 df(x)f(x)∈ Hom(Rk, Hom(Rk,Rn)) 	 (2)
is symmetric.
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Thus the existence of the dynamical system  is equivalent 
to the completely integrability of equation (1) [5].

Caratheodory dimension
Let X be an arbitrary set, F be some set of subsets of X, P be a parameter set 

(if d* is finite, then P :=[d*, +∞), else P=R), and let the following three functions 
be given ξ:F×P→R+ , η:F→R+ and ψ:F→R+ .We shall suppose that the following 
conditions are satisfied [2], [6]:

(A) 

(B) .
(C) For any ε>0 there exists δ>0 such that for any A∈F with ψ(A)≤δ it holds 

η(A, d) ≤ε if  d>0, d∈P and η(A, d) ≤ε-1 if d<0, d∈P.
(D) For any ε>0 there exists A∈F for which ψ(A)= ε.
We say that Z⊂X is an admissible set if for any ε>0 there can be found some 

finite or countable set U of subsets from F, forming a cover of Z.
(E) Any subset Z⊂X is admissible.
A collection (F, P, ξ, η, ψ) which satisfies (A)-(E) is called a Caratheodory 

(dimension) structure on X. Let Z be an arbitrary subset of X and d≥d*, ε>0 numbers. 
Define the Caratheodory d-measure at level ε of Z with respect to (F, P, ξ, η, ψ) 
by 
	 µC(Z, d, ε):= inf ΣA∈Uξ(A,d)	  (3)
where infimum is taken over all finite or countable sets U of subsets from F cover-
ing Z and such that ψ(A) ≤ ε for all A ∈ U.

Definition 5: The function µC(Z, d):=limε→0 µC(Z, d, ε) is called Caratheodory 
d-measure with respect to (F, P, ξ, η, ψ).
Definition 6: For a fixed Z⊂X the value

 

is called Caratheodory dimension of the set Z with respect to the structure 
(F, P, ξ, η, ψ).

Caratheodory structure for dynamical systems with multiple time

Let the metric space (M, p) be (Rn, ||*||). We assume that  
is a dynamical system with multiple time. We can determine a partial order on Rk 
using a convex pointed cone C ⊂ Rk, assuming that x ≤ y if y-x ∈ C. Thus C is a 
filter of sections on Rk. This structure helps us to define the limits of sequences. Let 
us generalize the notion of an interval on Rk. If C ∈ Rk is a convex pointed cone 
then [a,b]C := {a≤x≤b|x ∈ Rk} is an interval on Rk with respect to C. For a fixed 
cone let us write [a, b] and call it interval. Let [a, b]⊂ Rk be an interval, c: [a, b] 
→ Rn be a smooth map. We define the ε-container Ω(c, ε) as
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	 	 (4)
where B(p, ε) = {u ∈ Rn| ||u-p||<ε} is an ε-ball centered at the point p.
Consider intersections of straight lines with an interval [a, b] in Rk. The restriction 
of the smooth map c for each non-empty such segment defines a curve inside of the 
orbit. We will define the parameter l0 as the maximal length of the curves generated 
by c. For a some compact set K∈Rk and a number l0>0 consider a set of images of 
continuous maps Г(l0)={c([a,b])} for which the maximal length of curves for every 
domain is l0 and for every ε>0 the following covering property is satisfied:

The union of ε-containers Ω(c, ε) where c∈Г(l0) is a covering of K. We will 
construct a Caratheodory structure of ε-containers with length l0 on K using meth-
ods analogous to [3].

Suppose the following:
	 ,

 (5)

For c∈Г(l0) with Ω(c, ε)∩K≠∅ and ξ(∅,  d)=ψ(∅)=0, η(∅, s)=1 for all d∈P, 
s∈R.
Proposition 1: The container structure constructed above is a Caratheodory struc-
ture on K.
Proof: We should check conditions (A)-(E).

(A) Follows from the definition.

(B) 

 where ε>0 is arbitrary.

(C) Since  we can take δ=ε-d.
(D) Follows from the definition.
(E) Since K is a compact set, we can choose for any ε>0 a finite subcover of 

ε-containers.

Conclusion
We have considered dynamical systems with multiple time. For ivariant sets 

of such systems the construction of a Caratheodory structure is described. This 
structure can be used for the estimation of a Hausdorff dimension.

References
Gaishun I.V. Completely Integrable Multidimensional Differential Equations. 1.	

(In Russian). -Moscow: Nauka i tehnika, 1983, -258 p. 
Boichenko V.A., Leonov G.A., Reitmann V. Dimension Theory for Ordinary 2.	

Differential Equations. -Wiesbaden: Teubner, 2005, -405 p. 
Leonov G.A. // Vestnik of Saint Petersburg State University (in Russian), v.1, 3.	

№4, pp. 24-31 (1995).



40

Voynov D.A. // Caratheodory dimension structure for general dynamical systems 4.	
(in Russian). Year project, Saint Petersburg State University, pp. 1-10 (2014). 

Amelkin V.V. Autonomous and Linear Multidimensional Differential Equations. 5.	
(In Russian). –Moscow: Editorial URSS, 2003, -142 p. 

Pesin Ya.B. // Uspekhi Matematicheskih Nauk (in Russian) v.43, №4, pp. 95-6.	
128 (1988).



 
 
 
 
 
 

D. Solid State Physics 



42

Magnetic-field induced variation of energy dispersion of 
exciton in CdTe

Bodnar Stanislav
stasbodnar@mail.ru

Scientific supervisor: Dr. Loginov D.K., Department of Solid State 
Physics, Faculty of Physics, Saint-Petersburg State University

Introduction
Variation of exciton dispersion in magnetic field is extensively studied since 

2007. In papers [1, 2], optical reflection spectra for nanostructures with the CdTe/
CdZnTe quantum well (QW) in magnetic field (Voigt geometry) were measured 
and discussed. It has been shown that the application of magnetic field to the 
sample leads to the change of exciton dispersion. These changes are described in 
framework of the perturbation theory considering operator [1]:
	 ˆ 2

=
B

x
a e

V KB I
cM

	 ,(1)

where e is the electron charge, c is the velocity of light; M=me+mh is the exciton 
mass, where me and mh the electron and hole effective masses; K is the exciton 
wave vector, Bx is the magnetic field , ħ is the Planck constant, aB is the Borh 
radius, I = 0.68aB.

The change of exciton dispersion was treated contradictory. In papers [1, 2], it 
was treated as an increase of effective exciton mass. At the same time, in papers 
[3, 4] it was attributed to the magnetic-field-induced non-parabolic exciton disper-
sion. In present work, we compare contributions of the non-parabolicity and of the 
effective mass change to the exciton dispersion. 

Theoretical model
Authors of Refs. [3, 4] investigated a QW, which width is much greater than 

the Borh exciton radius. In such a wide QW, the exciton states can be described in 
framework of the hydrogen-like model.

We consider an exciton moving along z axis in a crystal with cubic symmetry. 
The z-axis coincides with direction [001]. This direction is also the axis of quan-
tization of the exciton angular and spin momenta. Magnetic field is applied along 
the x-axis coinciding with crystallography axis [100]. For calculation of exciton 
dispersion in magnetic field, we use the stationary perturbation theory.

Solutions of the unperturbed problem are the hydrogen-like wave functions. 
Basis of eigenfunctions is composed of the1s ground state and of the 2p±1 excited 
states of the exciton. The superscript denotes the projection of orbital angular 
momentum on the z axis. The excited 2p0 state does not noticeable affect the phe-
nomenon under consideration. We do not consider other states because they are 
moved by perturbation (1) in the zone of the continuous spectrum of states at the 
magnetic fields of 7 T used in papers [1, 2]. 
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Energy of the pure 1s-ground state, E1s, and of the 2p-excited state, E2p, of 
exciton in cross magnetic field are given by:
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Here Eg is the bandgap, R is the exciton binding energy (exciton Rydberg), D is a 
parameter of diamagnetic shift.

Matrix element of perturbation (1) describes the mixing of 1s and 2p states. 
It is nonzero between these state due to symmetry of 1s and 2p wave functions. 
The matrix of exciton Hamiltonian in this basis reads:

	 H = 
1

1
2

1
2

0
0

+

−

 
 
 
  

s
*

p
*

p

E V V
V E    
V E

	 (3)

For simplicity, we do not consider Zeeman splitting, which is described by operator 
Vb=0.5gµB. In our case, this operator leads to a light mixing of optically active 
and optically inactive exciton states [3, 4]. This mixing insignificantly affects the 
non-parabolicity and the change of effective exciton mass. We also neglect the 
mixing of 2р±1-states and 2р0- states. Calculations show that this mixing gives rise 
to relatively small effects.

For calculation of dispersion dependence, one should solve the Schrödinger 
equation and find eigenvalues for every wave vector K. The problem is reduced 
to solution of secular equation:
	 det[H-IE] = 0,	 (4)
where I is the unit matrix. Variation of dispersion caused by own non-parabolicity 
is determined by the matrix elements of operator (1).

At the same time, mixing of 1s and 2p states leads to change of effective exciton 
mass in these states. This effect described within the second order of perturbation 
using the follow matrix element: 
 	  

	 (5)

Results
We solved the secular equation (4), using additional in the first (1) and in the 

second (5) order of perturbation theory. In calculation were used next value of 
material constant of CdTe: permittivity Ɛ=9,7, bandgap Eg=1600 meV, electron 
mass me=0.096m0,heahy hole mass mh=0.66m0, parameter of diamagnetic shift 
D=1.2449*10-2 meV/T. Fig. 1 presents dispersion curves calculated in the first and 
in the second order of  perturbation theory.



44

 
Fig. 1. Dispersion of exciton states. Dashed curves demonstrate dispersion of 1s 
and 2p states in zero magnetic field. Red curve shows dispersion of 2p-state cal-
culated taking into account only the contribution of non-parabolicy, yellow curve 
calculated taking into account non-parabolicity and the change of effective mass 
in magnetic field 7T. Blue curve shows dispersion of 1s state, calculated taking 
into account non-parabolicity, green curve shows dispersion of 1s-state, taking 
into account non-parabolicity and change of effective exciton mass in magnetic 
field 7T. 

Fig. 1 shows component which takes into account non-parabolicity, leads to 
a significant change in curvature of the dispersion to increasing in magnetic field 
for 2p states and to decreasing in magnetic field for 1s states. In other words dis-
persion curves diverge proportionally of wave vector K. Correction responsible 
for change of effective exciton mass leads to additional splitting of dispersion of 
ground and excited states.

In order to compare the effect of non-parabolicity and the effect of effective 
exciton mass change we calculated change dependency of exciton energy in mag-
netic field on wave vector K.

These changes were calculated using the following equation:

ΔE2p=E2p,(B=7T)-E2p,(B=0T) for 2p states,

ΔE1s=E1s,(B=7T)-E1s,(B=0T) , for 1s states, where E2p(B=7T), E1s(B=0T)- energy of 
exciton states calculated in zero magnetic field, E2p(B=7T) E1s(B=7T)- energy of exciton 
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states calculated in magnetic field 7T in view of effective exciton mass change 
and non-parabolicity.

Fig. 2. Change of exciton states dispersion. Red curve shows change of exciton 
dispersion for 2p states calculated in view of non-parabolicity, blue curve shows 
exciton dispersion for 2p states in view of non-parabolicity and change of effec-
tive exciton mass. Purple curve shows change of exciton dispersion for 1s states 
calculated in view of non-parabolicity, green curve shows exciton dispersion for 
1s states  in view of non-parabolicity and change of effective exciton mass.

As it can be seen from Fig. 2, change of exciton dispersion at the expense of the 
second order of perturbation theory has the same order of magnitude, as the change 
caused by non-parabolicity. Additive parabolic in K responsible for the effect of the 
effective exciton mass change, is about half of liner in K additive, responsible for 
effect of own non-parabolicity. In this way, both of these contributions in spectra 
of QW reflection in cross magnetic field should be taken into count.

Conclusion
Comparative evaluation of magneto-field-induced non-parabolice additive and 

parabolic additive to dispersion of exciton was carried out. Both contributions give 
the same order of magnitude as the values, which makes it necessary to include both 
magnetic field contributions into the calculation of the dispersion dependences.
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Introduction
The binding energy of a free exciton is easily calculated for various types of 

semiconductors. For example, in the case of bulk GaAs semiconductor, this energy 
is: RX = 4.2 meV [1]. The simplicity of the calculation originates from the fact that 
the free exciton is described by the hydrogen-like one-dimensional Schroedinger 
equation (SE) with the Coulomb potential [2]. On the contrary, study of the exciton 
in the quantum well (QW) requires consideration of the three-dimensional SE. In 
addition to the Coulomb potential, this equation contains two square QW potentials 
[3]. For the infinite QW potentials, the very narrow QW can be approximated by 
the two-dimensional SE and the exciton binding energy approaches 4 RX as the 
width of QW goes to zero [5]. This is not valid for QW of finite thickness.

In the case of the finite QW potentials, an additional complication of the prob-
lem appears since the wave function penetrates under the potential barriers. When 
the QW width approaches zero, the three-dimensional SE is reduced to the one-
dimensional SE, but not to two-dimensional one. As a result, the exciton binding 
energy becomes equal to RX, the same as for the free exciton. 

Precise calculation of the exciton energy for QWs of intermediate widths 
remains a complicated computational problem although, during the last three 
decades, the exciton binding energy has been calculated several times for various 
semiconductors. Calculations has been done using various approximations generally 
based on variational calculations with prescribed assumptions on the wave function 
[3-5, 8]. The development of numerical methods [6] as well as the computational 
facilities made it possible to accurately solve the three dimensional SE without 
preconceived approximations [7]. As a result, the exciton binding energy can be 
precisely calculated.

This paper is devoted to solving of the three dimensional SE for the exciton in 
QW and the determination of the exciton ground state. To our knowledge, the direct 
numerical solution of the SE for the exciton in QW is reported for the first time. The 
applied numerical method shows the convergence of the results and consequently 
a very good precision of the obtained exciton binding energy for the wide range 
of QW widths. The uncertainties of binding energy are also estimated.

Numerical solution of Schroedinger equation
In the simplest case, the exciton in QW is described by the six-dimensional SE 

with the Hamiltonian [4]
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Where me and mh are the effective masses of the electron and the hole in semicon-
ductor, V(ze), V(zh) are the square QW potentials,      is the relative distance and 

	 he,he, i=k ∇− ˆ
	 .

We separate the center of mass motion and represent the Laplace operator in cy-
lindrical coordinates. We represent the unknown function as
 	 ρρψ /),,( he zz 	in order to guarantee its zero value at ρ=0, that in turn avoids singularity of the 
second derivative of the wave function at ρ=0. As a result, the original SE is reduced 
to the three-dimensional one [3]
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The center of mass motion along the QW layer is expressed by the analytical part 
of the original SE wave function, whereas the relative motion of the electron and 
the hole is given by the solution of Eq. (2). The studied boundary value problem 
(BVP) is formed by the equation (2) and the zero boundary conditions at some 
large values of the modules of the variables. For simplicity, we consider only the 
s-states, for which Eϕ=0.

Since SE (2) is the standard three-dimensional partial differential equation, 
the direct numerical solution of the BVP is feasible using available computational 
facilities. In our study, we use the finite difference approximation of the deriva-
tives in equation (2) due to the sparse and relatively simple form of the matrix 
equation. We employ the central fourth order finite difference formulas for the first 
and second derivatives:
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as well as non-central differences at the equidistant grid with the step h. They define 
the uncertainty of the numerical solution of the order of h4. The exponential decre-
ment of the wave function at large values of variables allows us to define wave 
function exactly zero beyond some rectangular domain. The size of this domain 
varies from dozens QW widths (for small widths) down to several QW widths (for 
large widths). The equidistant grid of the knots has been chosen over each variable. 
The grid step h has been taken the same for all variables and multiply associated 
with the QW width. The QW is in the center of the domain over ze and zh.

| |r
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The nonzero solution of the homogeneous matrix equation can be obtained 
by the diagonalization of the matrix. Due to the large structure of the matrix, 
only the part of the spectrum can be obtained. Using the Arnoldi algorithm [6], 
we have calculated the lowest eigenvalue of the matrix and corresponding eigen 
function. As a result, the ground state energy, EX, and the wave function of SE (2) 
have been obtained for various widths of QW. The exciton binding energy, RX, is 
defined with respect to the energies of the free electron, Ee, and free hole, Eh, in 
QW by the formula: 

	 XheX EE+E=R − .	
Energies Ee and Eh are obtained by solution of the corresponding one-dimen-

sional SE for the electron and hole in the QW [7].
Model parameters and results

We apply the proposed numerical algorithm for solving SE with parameters 
for the GaAs/Al0.3Ga0.7As QWs, which are more popular in experimental studies. 
In the calculation, the following model parameters have been used [9]:

 00.0665m=me , 00.353m=mh , 00.0414m=µ , 12.53=ε ,
 00.66V=Ve , 00.33V=Vh , ( )meV+=V 2

0 370x1155x , 0.3=x , 
where x is the concentration of aluminum in the AlGaAs alloys in QW barriers, 
m0 is the free electron mass. The calculations have been carried out for various 
widths of QW. 

The convergence of the ground state energy at some widths of QW as h → 0 
is shown in Fig. 1. The calculated energies are denoted by points. They show the 
quadratic behavior on h for small h. The extrapolation of the energies to h = 0 by 
a parabolic fit allows us to obtain the precise exciton ground state energy. The 
uncertainty of such extrapolation is chosen to be the difference between the most 
precisely calculated energy and the extrapolated one. The typical grid step ap-
propriate for the calculations with QW widths comparable with the Bohr radius 
is h = 0,2 nm.

The calculated exciton binding energy and the extrapolated energy values for 
various widths together with the correspondent interpolating curves are presented 
in Fig. 2. The uncertainty bars show the uncertainty estimated from the extrapola-
tion. The figure shows that the maximum energy of 9.66 meV is achieved at the 
QW width equal to 3 nm. For smaller widths the energy decreases and tends to the 
binding energy of the three-dimensional exciton.

Additionally, the study of QW with large widths allows us to estimate the free 
exciton binding energy. From Fig. 2, we can see that, for our case, this energy is
:                              meV that is slightly less than reported in [1]. Further calcula-
tions with different parameters will make it possible to compare our results with 
the results of other authors.

Conclusion
We calculated, to our knowledge, for the first time, the exciton binding energy 

in QWs of various widths without any prescribed approximations. The results of 
the high order finite difference calculations show a very good stability and con-

0.034.10 ±=RX
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Fig. 2. The exciton binding energy as a function of the width of the quantum well. 
The inset shows the binding energy for QWs of small widths. The transparent points 
show the calculated values of energy and the dashed curve interpolates them. The 
solid points show the extrapolated energies. The solid curve interpolates the solid 
points. The uncertainties are estimated as the difference between calculated and 
extrapolated points.

Fig. 1. The calculated exciton ground state energies as a function of the grid step. 
The parabolic fit which enables the extrapolation of the energy is shown. Various 
panels correspond to different widths of the quantum well.
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verge as the grid stem goes to zero. The extrapolation of the calculated energies 
allowed us to obtain the precise exciton binding energy. 
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Introduction
The most adverse consequences of nuclear power engineering are catastrophes 

happened at nuclear power plants (NPP) and the distribution of released radionu-
clides and environmental pollution. As a result of these accidents released radio-
nuclides from discarded nuclear reactor materials spread around the world. For 
example, after the accidents occurred in the Chernobyl (1986) and the Fukushima 
(2011) released more then 10 thousand PBq [1]. Residual radiation affects on the 
level of pollution of the environment of St. Petersburg and Leningrad region. 

The purpose and the tasks of work
The aim of the work was study of the influence of radiation precipitation from 

the accident at the nuclear power plant on radiation contamination of the territory 
of Saint-Petersburg and Leningrad region on the example of the accident at the 
Chernobyl NPP and NPP Fukushima.

Tasks of the work:
1.	 Choose radionuclides, which can identify contamination from each of the 

two accidents;
2.	 Investigate the background gamma-spectrum of environment;
3.	 Optimally choose the environmental object of research for a more detailed 

analysis;
4.	 Analyze the studied samples to find out impact of residual radiation from 

accidents;
5.	 Determinate impact of the accidents on the environment of the Leningrad 

region and compare it with the radiation safety rules and norms.

The method of investigation
Soon after the Chernobyl accident the investigation was carried out to notify the 

pollution of Europe by gamma-spectrometric survey from planes using scintillation 
detectors. Although this method gives uncertain data of radionuclide activity in the 
study area, it allows obtaining an overall picture of the contamination. Thus, accord-
ing to research in the Leningrad region was found 137Cs from Chernobyl accident in 
Kingisepp and Lomonosov districts with an estimated activity 1–5 Ci/km2 [2].
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Another method of investigation of the contaminated territories is the collection 
of samples of some objects of an environment (in this case, topsoil) and measuring 
them in the laboratory using semiconductor HPGe gamma-detector CANBERRA 
GC2018, that was surrounded by a lead shield, with the relative efficiency 20% 
and energy resolution 1.8 КэВ at the peak of 60Co 1333 KeV. This method of 
registration of radioactivity requires a longer time, but gives much more reliable 
information.

As the calibration source was used one with 152Eu distributed throughout the 
volume of filler (sand). After measuring its spectrum formulas for the energy and 
efficiency of the registration were determined (Fig. 1):

E   (0,100  0,001) Channel= ± ⋅
( lnε Ε)	=	(0,046 ±	0,003) − (0,059 ± 0,004)⋅ (	Ε	+	(−87 ± 8)	)

where E – energy, Channel – number of the channel, ε – efficiency of the registra-
tion.

Fig. 1. Graphs of association energy from channel and efficiency from energy.
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Spectrum of the background
Measurement of the background in the Old Peterhof (Leningrad region) (Fig. 2) 

showed that in the spectrum except for the lines of primordial single radionuclides 
(such as 40K) and radioactive series: uranium (238U with T1/2=4.47·109 y), thorium 
(232Th with T1/2=1.4·1010  y) and uranium-actinium (235U with T1/2=7.04·108 y), 
observed peak of artificial radionuclide 137Cs, which was identified as having the 
Chernobyl origin according its half-decay period; the peak of 134Cs, which can 
identify the Fukushima trace, doesn’t exceed 0.01 Bq.

The studied radionuclides
Artificial radionuclides can track their movement and accumulation in different 

environmental objects and can indicate the sources of the pollution. The degree 
of pollution in the study area is determined by the number of these radionuclides 
in the environment. 

In order to characterize the studied accidents radionuclides, which released in 
the accidents, were selected. Isotopes of caesium 134Cs and 137Cs is optimally done 
for the consideration of the impact of accidents on Fukushima and Chernobyl as 
they have half-decay periods close to the time that past from the moment of the 
accidents (T1/2(

134Cs)=2 years, T1/2(
137Cs)=30 years).

Fig. 2. Gamma-spectrum of the background.
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Activity of the radionuclide in sample is determinate as: 

p(E)(E)t
S-SA B

⋅⋅
=

ε

where time t=24h=86400s, S – area of the peak, p - the probability of emission, 
ε – efficiency of the registration

The observed results
Table 1. Experimental data.

A (137Cs)(Bq/kg)
Viborg 45±6

Orechvo 11,3±2,9
Svetloe 7,9±1,7
Losevo 290±30
Gruzino 10,3±1,7

Petyayarvi <0,1
Saint Petersburg 19±3

Universitet 14,3±2,7
Kronshtadt 33±4
Gatchina 13±3
Pavlovsk 1,1±0,6
Sablino <0,1

Kobralovo 2,4±0,3
Velkota 120±10
Kotelski 180±20

Luga 430±50

The observed results for 137Cs presented in Table 1. Samples in the polluted 
zones according to the old map have 137Cs activity of about 200 Bq/kg, however, 
some pleases outside of the contaminated areas were detect with radioactivity of 
137Cs more than 400 Bq/kg. That means that soil analysis showed a significant 
expansion of the radioactive spots 137Cs.

The radioactivity of 134Cs, which can identify the Fukushima trace, doesn’t 
exceed 0.01 Bq/kg, thus Leningrad region is not appreciably affected by the con-
tamination from Fukushima.

Conclusions
•	 The Chernobyl accident effected on the pollution of Saint-Petersburg and 

Leningrad region;
•	 Samples from the polluted zones according to the old map have 137Cs 

activity higher then in other places, but some samples from pleases outside of the 
contaminated areas were detect with higher radioactivity of 137Cs. So the spots of 
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contamination after the accident at the Chernobyl NPP is larger than it was estab-
lished earlier;

•	 The accident at Fukushima did not have a significant impact on the envi-
ronment of Leningrad region;

•	 Comparing radioactivity with the radiation safety norms show that the 
activity is less then maximum permissible dose (740 Bq/kg) [4];
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Wavelength equation
The quantum hydrodynamics as a convenient method for solving the Schrödinger 

equation has been developed E. Madelung, D. Bohm, T. Takabayasi and others 
[1–4]. Main feature of this method is definition of quantum velocity

mSv /∇=


via phase of wave function
( )exp /R iSΨ = ⋅  .

In case of a potential field, 3rd order linear equation for a wave length
2
mv
π

λ =


a particle can be derived [5]: 

( )
3

3 2 2

8 4 0d m d m dVV
dx dxdx

λ λ
+ − − λ =ε
 

,

Where ε is total energy, V is classical potential. An electric force affecting the 
particle is dV eE

dx
− = , 

where E– strength of the field.

Model and method of solution
In this work a bounded constant electric field is considered. According potential 

is V = 0 in the area x≤0 and V=-eEx in the area x>0 (Fig. 1). Protons with initial 
velocity enter from the left side in the area of electric field. A general solution of 
3rd order linear equation of this kind [6] can be obtained as sum of products of 
two fundamental solutions of equation 

( )
2

2 2

2 0d u m V u
dx

+ − =ε


,

So 2
23212

2
11 uCuuCuC ⋅+⋅+⋅=λ . 
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In our case ε=mν0
2/2 and the general solution in the area x>0 is expressed via 

the Airy functions Ai and Bi:
1/3 2/3 2 2

02
1 2 2 2

1/3 2/3 2 2
0

2 2 2 2

1/3 2/3 2 2
0

2 2 2

2 2( )

2 2

2 2

m vmeE meEx C Ai x

m vmeE meEC Ai x

m vmeE meEBi x

−                    
 

−                     
−        

   
      



λ = ⋅ − ⋅ − ⋅ +

⋅ − ⋅ − ⋅ ⋅

− ⋅ − ⋅

  

  

  
1/3 2/3 2 2

02
3 2 2 2

2 2 .
m vmeE meEC Bi x




 
 
 

−                    
 

+

⋅ − ⋅ − ⋅
  

Hence quantum velocity is

)(
2)(

xm
xvquantum λ

π= .

In the area x≤0 wavelength is constant. Coefficients were obtained by stitching of 
wavelength and its derivatives at x=0. Classical velocity is expressed as

2
0

2( )classic
eEv x x v
m

= + .

Results
Using quantum hydrodynamics and classical mechanics, calculations were made 

(Fig. 2–4) for protons (mass m, charge e) with initial velocity ν0 =450 km/s (mean 
one of the solar wind, energy ~5 keV) and ν0 =10000 km/s (energy ~500 keV) pass-
ing through homogeneous electric field of strength |E|=130 V/m, like the natural 
electric field of the Earth. The velocity spread is the difference of the quantum 
and classical velocities

)()( xvxv classicquantum − .
At first glance νquantum(x) is identical with νclassic(x) (Fig.2). However two unusual 

features have appeared (Fig. 3, 4): 1) splitting up quantum and classical velocity 

Fig. 1. The model potential.
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components, besides over-moderation (Fig. 3) or over-acceleration (Fig. 4) can 
take place; 2) spread, or dispersion (similar to thermal noise), of velocity which 
increases with distance.

Fig. 2. Movement of the protons in the homogeneous electric field: velocity of pro-
tons in quantum hydrodynamics (points) and classical mechanics (line).

Fig. 3. Velocity spread of protons in the homogeneous electric field. Initial veloc-
ity 450 km/s (~5 keV).

Fig. 4. Velocity spread of protons in the homogeneous electric field. Initial veloc-
ity 10000 km/s (~500 keV).
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Introduction
Since the term "splint" was introduced by D. Richter [1] in relation to classical 

root systems the attempts were made to apply it to other types of algebraic objects 
with varying degrees of success [2, 3]. Being a new tool of the representation theory 
splint allows to simplify calculation of some relations [4] while also yielding the 
new ones [2]. Thus generalization of splint continues to be a relevant problem.

In the present work injection fan reduction technique and "special" properties 
of special subalgebras are used to define splint in the case of special embed-
ding. Decomposition of the main algebra's singular element into combination of 
"stem's" singular elements is found and used to study properties of the new splints. 
Discovered special splints are studied and organized into several types. Among 
them the types that allow to simplify calculation of branching rules are found. To 
study splints where one of the stems does not have the properties of a root system 
new definition of singular element is suggested and together with the injection fan 
extension it might serve as a base for representation theory for such systems.

Methods, Results and Discussion
A root system ∆g of algebra g is said to be splintered if it is a disjoint union 

of the images of two root systems regularly embedded into it. These embedded 
root systems are called stems. If a - the algebra of one of the stems - is in fact a 
subalgebra of algebra gthen the splint is called "injective" [4] and it can be used to 
simplify calculation of branching coefficients for reduction g↓a. Special embedding 
differs from a regular one in the sense that the embedded root system ∆a is not a 
part of the root system ∆g This feature at the first glance makes it impossible to 
define splint in the case of special embedding. However, special subalgebras have 
some unique qualities [5] that together with injection fan reduction technique and 
universal method of special embedding construction [6] allows us to successfully 
redefine splint.

As it turns out [5], if one is to project the root system ∆g onto special subalge-
bra root space the resulting projection ∆′ will include the subalgebra root system 
∆a and another vector system called ∆s. Moreover, all vectors of ∆s will be linear 
combination of the roots of ∆a with integer coefficients. These two facts allow us 
to define special splint as a splint of the projection of a root system: ∆′=(∆a, ∆s). 
However, stem ∆s will be a root system only in some cases. This issue can be re-
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solved by using injection fan extension on special embeddings: known branching 
coefficients can be used to find singular elements for such systems.

The group of reflections Ws analogues to the Weyl group can also be defined 
for ∆s. The group of reflections in hyperplanes orthogonal to the roots from ∆g that 
already lie in the root space of special subalgebra will be called Winv. Both of these 
groups govern the symmetry of singular element of ∆s and thus define the part of 
the singular element to which the study can be reduced.

To help the process of finding and studying special splints further the universal 
method of special embedding construction [6] can be used. The method gives the 
exact algorithm of constructing special embedding and finding the expression of 
simple roots of ∆s via roots of ∆g which simplifies the process of projecting one 
root system onto the root space of another.

As one can regard singular element as a polyhedrone with edges paralell to the 
algebra roots, relations between Wa, Ws and Winv define the behavior of singular 
elements. Thus, the following propositions can be made:

If in special splint ' ( , )a s∆ = ∆ ∆ , s a∆ ⊂ ∆  then:
ˆˆ( ) ' ( )

1( ) (1 ...)( ),g s

inv

g s
W

eµ ρ µ ρµ µ

ω

ε ω ω σ + − −

∈

Φ = + + Φ∑  

where          is a singular element of ∆′; (1+σ1+..) are elements of Ws which place 
          into neighboring Weyl chamber of subalgebra a (one needs as many elements 
as the times Weyl chamber of algebra a can be put into Weyl chamber of Winv); 
ε(ω) is a sign of Weyl group element;              is the longest vector of        with 
positive singular multiplicity.

If in special splint ' ( , )a s∆ = ∆ ∆ , a s∆ ⊂ ∆  and inv aW ⊂ ∆  then:

ˆˆ( ) ' ( )
1( ) (1 ...)( ),g s

inv

g s
W

eµ ρ µ ρµ µ

ω

ε ω ω σ + − −

∈

Φ = + + Φ∑  

if there is no Winv or Winv ⊄ ∆a then:

ˆˆ( ) ' ( )(2 ( ) )( ).g s

inv a

g s
W W

eµ ρ µ ρµ µ

ω ω

ε ω ω + − −

∈ ∈

Φ = − Φ∑ ∑  

Fig. 1. Root system of al-
gebra A3 and its projec-
tion onto the root space 
of subalgebra B2.

( ) '
g
µΦ

( )
s
µΦ 

( ) '
g
µΦˆˆ gµ ρ+
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If singular element of the stem s            can be placed into the main Weyl chamber 
      of subalgebra a, then the action of injection fan          on         will yield:

( ) ( )
( ) ( ) .s sM bµ µ
ν µ µ ν− +=
 

Otherwise,
( )
( ) ( ) ,sb Nµ
µ µ ν ν− + = 

where            is multiplicity of the weight ν̃ of representation of s with the highest 
weight     if     is a root system;                 is a branching coefficient;         is coef-
ficient such as:

ˆˆ ( )
1 ( )((1 ...)( )) .g s

a g sV e N eµ ρ µ ρ µ µ
ν

ν

σ + − −
→ + + Φ = ∑  




In both cases ν̃ ∈ C̅ a and the main Weyl chamber aC should be constructed 
from the point                

According to these propositions, all special splints can be organized into six 
types:
Table 1. Types of special splints.

Let’s look at some examples:

( )
s
µΦ 

aC a gV →
( )
s
µΦ 

( )
( )sM µ
ν



( )N ν
( )
( )sb µ
µ µ ν− + µ s∆

Fig. 2. Splint D3 = (B2, A1 +A2) of the 
Type 1: projection of the singular ele-
ment 

      
        can be made from singular 

elements 
            

. Light-grey area is the 
fundamental Weyl chamber of subalgebra 
B2. This splint allows to calculate branch-
ing rules more easily. 

([1,1,2]) '

3DΦ
([1,1])

1 1A A+Φ

.µ µ−
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Fig. 3. Action of injection fan on the sin-
gular element                 yields branch-
ing coefficients. The example shows 
Gelfand-Zetlin rules for branching 
so(2n)→so(2n+1): according to stat-
ed propositions branching coefficients 
so(5)→so(6) are equal to weight multi-
plicities of stem A1+ A1 representations 
which are always equal to 1.

([1,1])

1 1A A+Φ

Fig. 4. Splint D3 = (A1+A1, B2) of the 
Type 1: projection of the singular element 
             can be made from singular ele-
ments          . Light-grey area is the fun-
damental Weyl chamber of subalgebra 
B2 (one of them is marked with grey 
colour).

([1,1,2 ]) '

3DΦ
([1,2 ])

2BΦ

Fig. 5. Splint for embedding A1→A2  of 
the Type 4: projection of the singular el-
ement            can be made from two sin-
gular elements 

       
.

([1,1])

2AΦ
( )

1BC

µΦ 
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Conclusion
It was found that the concept of splint can be generalized on the case of special 

embedding and that decomposition of the projection of the singular element of 
splintered algebra exists for both the case when one of the stems is not a root system 
and the case when it is. The latter quality is unique for special splints. Calculation 
of branching coefficients can be simplified for the splints of the first three types.

1.	 The new definition of singular element for the vector system that is not 
a root system together with the extension of injection fan might serve as the base 
for representation theory of such systems.

2.	 The type of special splints where neither of stems contains the other 
requires further research.
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Introduction
In a few past decades, intermittent interest has been attracted to the problem 

of intermittency and anomalous scaling in fluid turbulence. The phenomenon 
manifests itself in singular (arguably power-like) behaviour of various statistical 
quantities as functions of the integral turbulence scales, with infinite sets of inde-
pendent anomalous exponents [1]. In spite of considerable success, the problem 
remains essentially open: no regular calculational scheme, based on an underlying 
dynamical model and reliable perturbation expansion was ever constructed for the 
anomalous exponents of the turbulent velocity field. A most efficient way to study 
anomalous scaling is provided by the field theoretic renormalization group (RG) 
and operator product expansion (OPE). In the RG+OPE scenario of the anomalous 
scaling in turbulence the singular dependence on the integral scales emerges as 
a consequence of the existence in the corresponding models of composite fields 
(“composite operators” in the quantum-field terminology) with negative scaling 
dimensions; termed as “dangerous operators”. 

In the present paper, we adopt the approach [2] where the standard field theoretic 
RG was applied to the problem of stirred hydrodynamics of a compressible fluid, 
and the resulting stationary scaling regime was associated with the IR attractive 
fixed point of the corresponding multiplicatively renormalizable field theoretic 
model. 

Models and results
There are two diffusion-advection models for compressible fluid: density (for 

example, density of a pollutant) is described by the equation:
,=)( 2

0 fviit +∂∂+∂ θκθθ
and tracer (for example, temperature or entropy) is described by:

,=)( 2
0 fv iit +∂∂+∂ θκθθ

Where k0 is the molecular diffusivity coefficient, ν(x) is the velocity field and f=f(x) 
is a Gaussian noise with zero mean and given covariance.

( ) ( ) = ( ) ( / ), = 'f x f x t t C r L r x x〈 〉 δ − −′ ′ .
The Navier–Stokes equation for a viscid compressible fluid and continuity 

equation have the forms:
2

0 0= [ ] ,t i ik i k k i k k i iv v v f∇ ν δ ∂ − ∂ ∂ + µ ∂ ∂ − ∂ ϕ +
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,= 2
0 iit vc ∂−∇ φ where 2

0= ln( / )cϕ ρ ρ , .kktt v∂+∂=∇  
In those equations, ρ is the mass density and c0 is the speed of sound.
The correlation function is:  

>
( ) ( ) = ( ) ( ) exp{i },

(2 )
f

i j ijdk m

dkf x f x t t D k kx〈 〉 δ −′ ′
π∫

3 4
0 0( ) = ( ) ( ) .f d y T

ij ij ijD k g k P k P k− −  ν + α 
L

All these quantities depend on x = {t, x} with x = {xi}, i = 1…d. x→  ={xi}, i=1...d 
where d is an arbitrary (for generality) dimensionality of space. The constants ν0 
and µ0 are two independent molecular viscosity coefficients,       and     are the 
transversal and longitudinal projectors and g0 is the coupling constant. Summations 
over repeated vector indices are always implied.

According to the general theorem, the stochastic problem is equivalent to the 
field theoretic model of the doubled set of fields. The field theoretic formulation 
means that various correlation functions and response (Green) functions of the 
original stochastic problem are represented by functional averages over the full 
set of fields with weight eS(Ф), where S is the action functional and Ф is doubled 
set of fields. 

It turns out that our model (with an insignificant addition) is multiplicatively 
renormaliable. 

It is well known that possible IR asymptotic regimes of a renormalizable field 
theoretic model are associated with IR attractive fixed points of the corresponding 
RG equations. In our model there is one IR attractive fixed point and it governs 
the IR asymptotic behaviour of density and tracer models. Using its value, we got 
critical dimensions for fields θ, θ′:

= 1 / 6, = 1 / 6,y d yθ θ′∆ − + ∆ + −

Where θ′ is the auxiliary response field. These expressions are exact due to the 
absence of renormalization of the fields.

The key role in the following will be played by certain composite fields (“com-
posite operators” in quantum-field terminology). A local composite operator is a 
monomial or polynomial constructed from the primary fields and their finite-order 
derivatives at a single space-time point x = {t, x}.

The simplest case of the operators is: 
)(=)( xxF nθ .

We calculated their critical dimensions for two cases:
density model: 

2( 1)[ ] = ( ),
6 6( 1)

n ny n n dyn O y
d
− α

∆ θ − + − +
−tracer model: 

[ ] = = / 6n n n nyθ∆ θ ∆ − +  (exact).
Then we considered the equal-time pair correlation function of two UV finite 

quantities F1,2(x) with definite critical dimensions, namely, the correlation function 
θn(x). By means of operator product expansion one can get the expression for the 
density field: 

T
ijP L

ijP
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( )
1 2( , ) ( , ) ( ) ( ) .p k p k p k p kt x t x r mr

−∆ −∆ ∆− + +〈θ θ 〉 = µ µ
It is worth noting that the set of operators θn is closed with respect to the fu-

sion in the sense that the leading term in the OPE for the pair correlator of two 
such operators is given by the operator from the same family with the summed 
exponent.

Our consideration of effects of the large-scale anisotropy gives quantitative 
support for Kolmogorov's hypothesis of the local isotropy restoration and appears 
rather robust, being observed for the real fluid turbulence.

Conclusion
We have studied two models of passive scalar advection: the case of the 

density of a conserved quantity and the case of a tracer. The advecting velocity 
field is described by the Navier--Stokes equations for a compressible fluid with 
an external stirring force. The full stochastic problems can be formulated as field 
theoretic models. Their inertial-range behavior was studied by means of the OPE; 
existence of anomalous scaling (singular power-like dependence on the integral 
scale L) was established.

Thus we removed two important restrictions of the previous treatments of the 
passive compressible problem: absence of time correlations and Gaussianity of the 
advecting velocity field. We stress that in contrast to previous studies that com-
bined compressibility with finite correlation time, the present model is manifestly 
Galilean covariant, and this fact holds in all orders of the perturbation theory. In a 
few respects, however, the results obtained here are very similar to those obtained 
earlier for the compressible version of Kraichnan's rapid-change model and the 
Gaussian model with finite correlation time.

Although the anomalous exponents are independent of the specific choice of 
the noise, they do depend on the exponent y, the dimension of space d and n the 
parameter α, that measures the degree of compressibility. In this respect, our results 
are also similar to those obtained for simpler models. More detailed presentation 
of our work can be found in [3].

In the following, the combination of the RG techniques and the energy bal-
ance equation seems promising. This work remains for the future and is partly in 
progress.
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Introduction
Research is focused on the problems related to description of gravitation. We 

consider a formulation of gravitation theory in which it is supposed that space-time 
is 4-dimensional surface in 10-dimensional flat space is considered (first this idea 
was proposed by T. Regge and C. Teitelboim [1]). In this approach, the embedding 
function of the space-time into the flat 10-dimensional space is an independent 
variable for description of gravity. Canonical formalism for embedding theory with 
partial gauge fixing that matches time of the surface and one of the ambient space 
is developed. The exact form of the first-class constraint algebra is obtained. The 
results are compared with the constraint algebra for Regge-Teitelboim formulation 
of gravity [2]. The results obtained will be used for developing the canonical formal-
ism for formulation of gravity as a field theory in the ambient space. In the future, 
it may help to avoid some problems arising in attempts to quantize the gravity.

The Embedding Theory
The Einstein's General Relativity is a common theory of gravity. It works well 

for classical physics, however all attempts to construct the quantum theory of 
gravity have failed. Nearly forty years ago, in 1975 T. Regge and C. Teitelboim 
suggested a formulation of gravity similar to the formulation of string theory. They 
assumed that our space-time is a four-dimensional surface in ten-dimensional 
Minkowski space R1,9 with one timelike and nine spacelike dimensions. In this 
case, the variables describing the gravity are the embedding function of this surface 
into the ambient space
	 4 1,9( ) :ay x R Rµ → ,	  (1)
where a =0,…,9, μ, ν…= 0,1,2,3. In Regge and Teitelboim's approach, the standard 
Einstein-Hilbert's action 
	 3  S d x g R= −∫  	  (2)
is taken as an action of the theory. In this expression, they replaced the metric with 
the induced metric expressed in terms of the embedding function 
	 a

ag y yµν µ ν= ∂ ∂ .	  (3)
We will call this formulation of gravity The Embedding Theory [1]. Formalism 
convenient for calculations in the Embedding Theory is described in details in the 
book [3]. In this approach the equations of motion - the Regge-Teitelboim (R-T) 
equations 
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	 0aG bµν
µν =  	 (4)

appear to be more general than the Einstein equations which means that they con-
tain extra solutions. To overcome the problem of extra solutions T. Regge and C. 
Teitelboim suggested imposing additional constraints - Einstein’s constraints,
	  0 Gµ ⊥ = ,	 (5)
where Gμ⊥ is the Einstein tensor, and the symbol ⊥ denotes the direction orthogo-
nal to the constant time surface. While constructing the canonical formalism these 
constraints are considered similarly to the primary constraints, resulting in a system 
of eight constraints:
	

3
a

i a ieπΦ =  ,	 (6)
	 33 3 3

i a ik a i
k a ag D g eπ α π

 
Ψ = − − − + 

 

 
,	 (7)

	 4 a
awπΨ =  ,	 (8)

	
3

3 3
0 11

,
4

a ik lm b
a ik lm b

g
L g Rπ α α π−

−
= − −

 
.	 (9)

We will call the theory arising from such approach the Regge-Teitelboim formula-
tion of gravity, in contrast to the embedding theory.

The embedding theory is not free from problems connected with quantization of 
gravity.  Foliation theory [4] could be the next step on the way of solving such prob-
lems. This theory deals with many 4-dimentional surfaces each of them describes 
dynamics of 3-dimencional space in the flat ambient space. These 4-dimentional 
surfaces pass through each point of R1,N-1 space, they neither intersect nor interact. 
We can say that R1,N-1 is foliated on a system of surfaces. All disturbances propagate 
along the surfaces. Geometry of surfaces corresponds to R-T equations. This theory 
formulates gravity as a field theory in the flat ambient space. Quantization of such 
type theory is well known. The coordinates on the surfaces are not introduced, the 
only time there is, is an external time – time of the ambient space. To construct the 
canonical formalism for foliation theory we have to consider embedding theory 
with an additional condition (the partial gauge fixing) 
	 0 0 y x= ,	 (10)
that matches time of the surface and time of the ambient space. This consideration 
is the object of this work.

Canonical formulation
The addition of gauge condition into the action can lead to loss of some mo-

tion equations. In this case, we have only nine R-T motion equations (instead of 
ten (4)):
	 0AG bµν

µυ = ,	  (11)
where A=1…9. It was verified that the tenth equation 
	 ( )0 0G bµν

µν =  	  (12)



72

automatically satisfies due to satisfying of nine equations and presence of coordinate 
condition. Therefore, our gauge condition does not spoil the theory.

The action under satisfied gauge condition takes the following form, with 
explicitly defined dependence on the time derivatives: 
	

3

3

1 1
2

1

A B
A B DAB

AB D
A B

AB

S y B
y

y B ydx y
y

⊥

⊥

 
 = + +  + Π

Π

 
∫ 







. 	 (13)

The gauge fixing leads to reducing the number of constraints by one. Now 
there are eight constraints: 
	

3
A

i A ieπΦ =  ,	  (14)
	

	
3 3 3 3 3

0 1 1 1 ,

3 ,

4

1 ik lm A D
A B ik lm

A B ik lmik lm DAb L b
g

g b b Lπ π η− − −= −
−

−  ,	 (15)
	

33 3
1

3

1 .
ik

i
k A Ag b

g
π−

 
 = − − ∇   − 

 	  (16)

Constraint algebra
It is convenient to use a linear combination:

	            
3

k k ik
i gΨ = + Φ  ,	 (17)

instead of the constraint (16). In addition, it is convenient to deal with convolution 
of constraints and arbitrary functions:
	 ( ) ( )3  i

id x x xΦ ≡ Φ∫ξ ξ ,	   (18)
	

( ) ( )0 3 0 d x x xξ ξ≡ ∫  ,	   (19)
	

( ) ( )3 k
kd x x xξ ξΨ = Ψ∫ .	   (20)

It simplifies expressions and leads to laconic form of results. 
First, we find a geometrical meaning of three constraints Φi. For this purpose, 

we calculate their action on variables. It is easy to find that
	

{ } ( ) ( )( ), A i A
iy x y xxξ ξΦ = ∂ ,	  (21)

	
( )
( )

( ) ( )
( )

3 3
, .iA A

i

x x
x

g x g x

 
 Φ = ∂ 
 − − 

ξ

π π
ξ

 

	   (22)

It means that Φξ generates a transformation x i→x i+ξ i(x) of 3-dimensional 
coordinates on the constant-time surface W3 (it should be noted that generalized 
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momentum πa is a three-dimensional scalar density). Because all constraints are 
covariant (in three-dimensional meaning) equalities, we can write the action of 
constraints Φi on them:
	 { } 3

3
3

,  i k i k
i ikd x  Φ Φ = − ∇Φ − ∇ ∫ξ ζ ξ ζ ζ ξ ,	   (23)

	 { } 3
3

3
,  k i i

i kk id x  Φ Ψ = − ∇Ψ + ∇ ∫ξ ζ ξ ζ ζ ξ ,	   (24)

	 { }0 3 0,  i
id xΦ = − ∂∫ξ ζ ξ ζ  .	   (25)

Now we find a geometrical meaning of four constraints Ψk. It is easy to verify 
that
	

3

, ( ) 0
ik

xg 
Ψ = 

 
ξ ,	   (26)

so the constraints Ψk generate transformations which are an isometric bending of 
the surface W3. After tedious calculations, we get the exact result of
the action of constraints Ψk on other constraints: 

	 { }
3 3

3, i A i A
i iA Ad x r r r rξ ζ ξ ζ ζ ξ

 Ψ Ψ = Ψ ∇ − Ψ ∇  ∫ ,	   (27)

	 { } ( )
3 3

0 3 1 1, i A B i A B
i iBA BAd x r B r Bξ ζ ξ ξπ ζ π ζ− −  Ψ = Ψ ∇ − Ψ ∇    ∫ ,   (28)

where 
	

3 33
1

B

B ikB iB
i k ir b eξδ

ξ δπ ξ ξΨ −= = ∇ + .	   (29)
After another tedious calculation we get:

	 { }

( ) ( )

3 3 3
0 0 3

3 3
1 1 1 1

, (

)

l lm
l lm

k B C A B C A
k kBA C BA C

d x g

B B B B

ξ ζ ξ ζ ζ ξ

π ξ π ζ π ζ π ζ− − − −

  = − Ψ − Φ ∇ − ∇ +    
 +Ψ ∇ − ∇  

∫ 
 

.	   (30)

Formulas (23), (24), (25), (27), (28), (30) give the exact form of the first-class 
constraint algebra for the Embedding Theory with partial gauge fixing.

Another approach
We can fix the gauge by introducing it as an additional condition χ=y0-x0=0 

not in the action but in the canonical formalism,
	

{ } ( )4 3 0 0 0, 0
a

a
b

b

wd x y x w
y

δπ δχ
δπ δ

Ψ = − = ≠∫ ,	   (31)

therefore, we express a pair of variables y0=x0, π0. As a result, eight constraints of 
Regge-Teitelboim formulation of gravity turn into seven constraints of the formula-
tion with a partial gauge fixing, so does the constraint algebra.

This suggests that in the case of the imposition of additional Einstein's con-
straints, canonical formalism of the theory with respect to the time of the ambient 
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space (i.e., the partial gauge fixing in action) is equivalent to the canonical descrip-
tion of the theory with respect to the time of the surface.

Conclusion
Canonical formalism for embedding theory with partial gauge fixing that match 

time of the surface and time of the space has been build. The exact fom of the first 
class constraint algebra for the embedding theory with the partial gauge fixing has 
been obtained. The constraint algebra for embedding theory with partial gauge 
fixing has been compared with one obtained without it. The results obtained will 
be used for developing the canonical formalism for formulation of gravity as a 
field theory in the ambient space [4]. It may help to avoid some problems arising 
in attempts to quantize the gravity.
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Introduction
By virtue of high-precision observations, lately a new class of objects in the 

Solar System – triple asteroids – was discovered, which are described in terms of 
Newtonian three-body problem. The first triple asteroids were discovered about 
ten years ago. At that moment about dozen of such objects are known. The studies 
of this class of objects will improve the understanding of evolution of the Solar 
System.

In our research, we have examined five triple asteroids, which are known for 
all orbital characteristics and masses of the components. We have determined 
the stability of these systems using analytical stability criterion and studied their 
dynamic evolution over time by numerical experiments.

Observed triple asteroids and their characteristics
We have used the results of observations of several triple asteroids [1]. Data 

for these systems are given in Table 1. The Table shows that the central body mass 
is larger than those of companions by a few orders of magnitude. The eccentrici-
ties are close to zero; therefore the orbits are almost circular. The largest mutual 
inclination belongs to Eugenia, and it is about 20º. As for the periods, they are of 
a few days. Periods of satellites in the same system are comparable (the maximum 
difference of nine times is in the system Sn263).
Table 1. Masses of the components and orbital characteristics for triple asteroids 
under consideration obtained using observation data.  

System m0, kg m1, kg m2, kg a1, km a2, km e1 e2 Imut, º P1, days P2, days

Eugenia 5.63   
×1018

2.51 
×1014

2.51 
×1014 610.8 1165 0.069 0.006 20.5 1.79 4.71

Sylvia 1.48 
×1019

7.33 
×1014

9.32 
×1014 706.5 1357 0.027 0.0055 0.56 1.37 3.65

Haumea 4.01 
×1021

1.79 
×1018

1.79 
×1019 25657 49880 0.249 0.0513 13.4 18.3 49.4

Sn263 917 
×1010

9.77 
×1010

24.0 
×1010 3.804 16.63 0.016 0.015 13.9 0.69 6.22

1994 CC 25.9 
×1010

0.58 
×1010

0.09 
×1010 1.729 6.130 0.002 0.192 15.7 1.24 8.37
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Golubev criterion of stability
The first stability criterion for the restricted three-body problem was obtained 

by George Hill in 1878. In 1967, Valentin Golubev [2] has analytically generalized 
Hill’s criterion for the general problem of three bodies. Golubev has shown that if 
a triple system has the dimensionless parameter

that is larger than a certain critical value sc then the system remains stable, i.e. an 
exchange of the components is prohibited, otherwise triple system can change its 
structure [3]. Here c and H are angular momentum and total energy of the triple 
system; M̅    is the average mass of three bodies, G is gravitational constant. The 
value sc is determined by the masses. 

The use of the Golubev criterion to the analysed triple asteroids shows that 
they are stable (see table 2).
Table 2. The stability parameters and their critical values.

System s sc

Eugenia 7.40×10-13 7.10×10-13

Sylvia 1.52×10-12 1.42×10-12

Haumea 1.18×10-7j 1.17×10-7i
Sn263 1.67×10-5i 1.55×10-5i

1994 CC 5.93×10-5i 4.45×10-5i

Numerical simulations of dynamical evolution
The main part of our work was devoted to a numerical model construction of 

the three-body system in order to calculate the trajectories for long times, about 
106 orbital periods of satellites (~ 104 years).

Using the data from Table 1, the initial coordinates and velocities of three bod-
ies were calculated in the reference frame associated with the centre of mass of 
the triple system. Differential equations of the motion of bodies were integrated 
numerically by the fourth-order Runge-Kutta method with automatic step choice. 
The calculations were checked by conservation of the integrals of motion (the 
energy integral error to the end of calculations was ~ 10-8, other integrals were 
conserved with much better accuracy). The ability to get the quantities of interest 
at any step of numerical integration was also implemented.

Fig. 1 shows the dependences on time for parameters of the triple asteroid 
Eugenia. The plots show an absence of secular evolution that confirms the stability 
of the system. Similar dependences for other asteroids take place.

Next, let’s consider in detail a nature of variations in the semi-major axes and 
eccentricities of the satellite orbits. These dependences are also shown for the 
system Evgenia (Fig. 2). The graph shows that the semi-major axes oscillate with a 
period comparable to the orbital periods of satellites. The eccentricities along with 
fluctuations indicate certain trends. We assume that this phenomenon may be due 
to the well-known Lidov-Kozai effect [4, 5] that will be studied below.
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The Lidov-Kozai effect refers to periodic changes of inner binary eccentric-
ity and mutual inclination of binaries orbits in a triple hierarchical system. This 
mechanism may lead to a strong grow of inner orbit eccentricity with a large 
mutual inclination. For example, Lidov showed that if the lun0ar orbit inclination 
to the ecliptic plane had been 90º then the eccentricity of its orbit would increase 
so rapidly that the Moon falls to the Earth in four years!

Fig. 1. The time dependences of orbital parameters for triple asteroid Eugenia.



78

The eccentricity e of inner binary and mutual inclination i change simultane-
ously and are connected by Kozai quasi-integral that also contains the semi-major 
axis a of inner orbit [6]:

This value varies cyclically with small amplitude. The formula shows that the 
inclination increases when the eccentricity decreases and vice versa. The period 
of that exchange is called the Lidov-Kozai cycle, and it is determined by the fol-
lowing approximate expression:         

Here Pex, eex, mex are the orbital period, eccentricity and mass of the outer body, 
which causes a perturbation of the body in an orbit with the period Pin; M is the 
total mass of all three bodies.

For considered asteroids the assumption that this phenomenon exists was cor-
rect. Numerical simulations for the time equals to the Lidov-Kozai cycle show syn-
chronous periodic changes in eccentricity and mutual inclination. Below we show 
the dependencies which illustrate the Lidov-Kozai effect for Eugenia (Fig. 3).

Fig. 2. Dependences of orbital parameters for the asteroid Eugenia during a short 
time.  Similar behavior was observed for the other studied objects too.
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Conclusions
We can make the following conclusions:

1) Considered triple asteroids are stable according to the Golubev criterion.
2) At large times, the orbital elements of the triple asteroids experience quasi-
periodic oscillations. The main conclusion of the numerical simulations is that the 
stability of the systems during long-term intervals takes place.
3) The Lidov-Kozai effect is observed for the system Eugenia. For the rest, it is 
weaker or at all not evident.
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Fig. 3. The Lidov-Kozai effect for the asteroid Eugenia. Integration time is equal 
to the Lidov-Kozai cycle.
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In the modern theory fundamental constants are parameters of the Standard 
model that are considered unchanging over time and space. But since their exact 
values cannot be calculated within the Standard model, it is natural to question 
their invariability. There exist multiple theories with those parameters varying. 
They connect the drift of constants with the existence of additional dimensions in 
space [1], or the different local density of matter around the Universe (Chameleon 
theories) [2, 3], or with some global scalar field [4, 5]. Testing these models can 
lead to deeper understanding of physics.

Molecular spectra can be used to study variation of μ – electron-to-proton 
mass ratio [6, 7]. In the focus of our work is the tunneling-rotational spectrum of 
ethylene glycol HO-CH2-CH2-OH. It has been observed in the interstellar medium 
[8, 9] and in the comet C/1995 O1 (Hale-Bopp) [10]. 

Sensitivity coefficients
Let ω be a present-day experimentally observed transition frequency and 

ω’ a frequency shifted due to possible time (and space) change of μ. This shift 
Δω = ω – ω’ is linked to the change Δμ through sensitivity coefficient Qμ:

       

Fig. 1. Schematic molecules of ethylene glycol in two degenerate states of the con-
formation g’Ga.
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Effective Hamiltonian
Ethylene glycol molecule has several conformations, which correspond to the 

local minima of the potential. The lowest conformation is labeled as g’Ga and is 
twofold degenerate [11] (see Fig. 1). Tunneling motion between two configura-
tions of the g’Ga conformation lifts degeneracy and causes 7 GHz energy splitting 
of the ground state. Our main goal is to calculate sensitivity coefficients for the 
tunneling-rotational transitions. Therefore we need to define how the parameters 
of the effective Hamiltonian depend on the electron-to-proton mass ratio μ. We 
found that reasonable accuracy for the tunneling-rotational spectrum is provided 
by the 14 parameter Hamiltonian (ξ,η,ζ – molecular frame):

(1)

(2)

(3)

(4)

(5)

Rotational constants are A >> B ≈ C, so we can use basis set |J,KA> for prolate 
top with KA≡ < Jζ >.
(1) is asymmetric top rotation 	

A, B, C ~ 1/I ~ 1/MR2

(2), (3) are diagonal and non-diagonal in KA centrifugal corrections
ΔJ, ΔK, ΔJK, d1, d2, d3 ~ μ2

(4) describes tunneling degree of freedom, τ = -1,1 is tunneling number, F is tun-
neling frequency, Wi are centrifugal corrections to the tunneling frequency:

F ~ μ4.1, Wi ~ μ5.1

(5) d3, d4 show Coriolis interaction between rotation and tunneling motion.
d3, d4 ~ μ5.1

Numerical results
We fit 14 parameters of the Hamiltonian to the experimental transition frequen-

cies from [11], so that the rms (root-mean-square) deviation of modeled frequency 
from the measured one is minimal. We use simplex method to obtain rms error of 
0.3 MHz and the maximum deviation of 1.3 MHz.
	 We diagonalize the Heff matrix for several sets of parameters, which 
correspond to different values of μ, to determine the sensitivities q for the energy 
levels and then the coefficients Qμ(ω) = (q – q’)/ω for each transition.
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Table I. Predicted low-frequency tunneling-rotational transitions and their sensi-
tivity coefficients Qμ . Frequencies ω are in MHz, wavelengths λ in cm. Tunneling 
number v = 0,1 is connected with τ = -1, 1 through v = (1 – τ)/2 . Quantum numbers 
JKA,KC , where KA≡ < Jζ >. Frequencies from “The cologne database for Molecular 
Spectroscopy” are in boldface.

Table II. We found out that some of predicted low-frequency transitions are listed 
in “The Cologne Database for Molecular Spectroscopy”. The agreement is within 
error of Δω = 0.5 MHz.
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Conclusion
Low-frequency transitions with high Qμ of both signs were found:
	 ω1 = 1181.6 MHz : Qμ1 = 17.9(26)
	 ω1 = 882.2 MHz : Qμ2 = -16.5(58)
Qμ1 - Qμ2 ≈ 34 – the big difference is convenient for ruling out the systematic 

error in the experiment.
Observation of the ethylene glycol spectrum from extragalactic sources can give 

us new information about the time-drift of μ. Spectral lines from cold molecular 
clouds in the Milky Way can be very narrow allowing for high precision spec-
troscopy. This can be used to study possible dependence of μ on the local matter 
density, which is predicted by models with chameleon scalar fields.
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Introduction
Special properties of magnetic nanoparticles (MNPs) open wide opportunities 

to apply them in clinical diagnostics by MRI methods. Like nanoparticles made of 
common diamagnetic materials (SiO2, ZnO, TiO, CaCO3), magnetic nanoparticles 
made of iron oxide possess a  surface with high adsorption capacity. However 
unlike these nanoproducts, magnetic iron oxide nanoparticles have one peculiar 
property to acquire superparamagnetic state. Due to this state magnetic suspensions 
of SPIONs (superparamagnetic iron oxide nanoparticles) can be used in magnetic 
hyperthermia, theranostics [1], drug delivery [2] and in MRI as contrasting agents 
[3]. Aqueous suspensions of SPIONs have reduced stability due to particle aggre-
gation. The use of surfactants can increase the stability of colloid and slow down 
coagulation processes. Molecules of dextran on the surface of magnetite particles 
increase repulsion and partially stabilize the suspension. Binding of proteins to 
the particle surface usually increases the size of the aggregates, thus decreasing 
the stability of such systems. 

The improvement of stability of MNPs formations for MRI diagnostics based 
on SPIONs is not possible without the development of rapid and robust techniques 
of particle aggregation analysis. In the present paper we analyze the possibility 
of using electro-optical techniques to study aqueous suspensions of magnetite 
nanoparticles.

Results and Discussion
Systems of two types were prepared for electro-optical study: nonconjugated 

SPIONs and conjugates of SPIONs with protein Hsp70. SPIONs have been prepared 
by coprecipitation of water dissolved salts FeCl3 and FeSO4 and then were coated 
with dextran (Sigma-Aldrich Corporation, 9-11 kDa). Before the conjugation of 
SPIONs with Hsp70, the amination of its dextran coat has been done, using car-
boxyls of Hsp70 that were activated by water dissolved carbodiimid. Recombinant 
human heat shock protein Hsp70 was prepared from E. coli transformed with a 
pMSHsp70 plasmid. Particle size and size distribution of MNPs were studied by 
transmission electron microscopy (TEM) (Jeol).

The systems prepared by this way were investigated by electro-optical method. 
The intensity of light scattered magnetite nanoparticles suspended in water is 
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high and considerably increases with aggregate formation. Electro-optical effects 
in such systems are related to the peculiarities of light scattered by the particles 
and are caused by anisotropy induced in the system by the applied electric field. 
Orientation of particles and their aggregates in electric field influences the inten-
sity of light scattered by the particles and thus causes alterations of the intensity 
of light transmitted through the suspension. If the intensity of light transmitted 
through the system under study changes differently for different light polariza-
tions in electric field one calls such effect induced dichroism. The magnitude of 
dichroism can be defined as

	
)ln( ||JJN ⊥= , 	 (1)

where J|| and J⊥ are the intensities of transmitted light beam polarized along and 
across the orienting electric field. If the system under study is monodisperse, the 
magnitude of dichroism is proportional to the particle orientation degree Ф:

	 ,0 Φ⋅= NN 	  (2)
where N0 is the value of N at saturated orientation of particles in the field. Values 
N and N0 in (2) are determined from the experiment using (1).

For weak particle (or aggregate) orientation at curtain direction

	
2

15 B

E
k T

Φ = γ
,	  (3)

where E is the applied electric field strength, γ is the anisotropy polarizability of 
particle (or aggregate), kB is the Boltzmann constant, T is absolute temperature. 
After the electric field causing particle orientation is switched off electro-optical 
effect can be described by

	 ( )0 exp 6N N Dt= ⋅Φ − ,	 (4)
where D is the rotary diffusion coefficient of a particle (or an aggregate) which 
depends on its size. [4] 

Equations (2)-(4) are valid for diluted systems [4] (single light scattering). The 
studied suspensions of magnetite particles are concentrated, light attenuation is 
significant, and one should consider light scattering to be multiple. To verify the 
applicability of these relations to concentrated systems the influence of particle 
concentration on electro-optical effect N of polydisperse aqueous colloid of diamond 
at different particle concentration was studied. The average particle size in this 
suspension is close to 500 nm, and they scatter light strongly. We did not observe 
formation of aggregates in this colloid while varying particle concentration in a 
wide range (the turbidity of the suspension changed more than 102 times). It was 
determined that varying particle concentration significantly changes the value of 
N0, and weakly influences the shape of particle orientation degree function Ф. 
We concluded that relations (2)-(4) can be used for semi-qualitative analysis of 
electro-optical data.

A principle scheme of the electro-optical setup designed and built for these 
experiments [5] is presented in Fig. 1.
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Fig. 1. Principal scheme of electro-optical setup.

Particle orientation in cell C filled with the system under study (0,6 µg/ml of 
Fe) is induced by pulses of sine-shaped electric field applied to parallel electrodes, 
which are perpendicular to the incident light beam. Electric field pulses (with 
magnitude 0-250 V/cm, shape, and frequency 3-70 kHz controlled by the PC) are 
amplified by power amplifier PA and then are applied to the electrodes in the cell. 
To study concentrated systems we used a thin cell with optical path length of 4 
mm, while for diluted systems where single light scattering occurred a cell with 
optical path length of 50 mm was used. A narrow beam of unpolarized light from 
source of light S, after transmitting though the cell is split into two (polarized along 
and across the electric field) and then measured by the photodetectors PhR. Such 
setup allows registering intensities J|| and J⊥ of the split beams simultaneously by 
the PC and record the value of dichroism N (computed according to (1)), which 
allows to study rapidly changing systems.

For the prepared systems both the relaxation dependences N(t) and stationary 
electro-optical effect dependence on electric field strength N(E2) were measured, 
which allowed to semi-quantitatively assess the particle aggregate size and electric 
polarizability. Experimental dependence N(E2) in the range of electric field strength 
up to 0.45 kV/cm was /measured for all suspensions and corresponded to equa-
tion (3), with γE2/15kT<<1 and γ<<10-14 cm3 for all systems studied. Addition of 
NaCl (0.6, 1.2, 1.8 µg/ml) decreases the magnitude of dichroism and γ in water of 
magnetite particles coated with dextran. It agrees with the hypothesis that induced 
dipole moment of magnetite particles decreases in a manner similar to the decrease 
of induced dipole moment for other hydrophobic particles during adsorption of Na+ 
ions. Increasing the frequency of applied electric field applied in the range from 3 to 
70 kHz decreases value of γ. It indicates the influence of diffuse part of the double 
electric layer of magnetite particle on induced dipole moment magnitude.

Electro-optical effect relaxation curves N(t) for SPION suspension and suspen-
sion of SPIONs conjugated with Hsp70 are presented in Fig. 2.
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Fig. 2. Relaxation curves of electro-optical effect in SPION suspension (a) and 
suspension of SPIONs conjugated with Hsp70 (b).

A poly-exponential dependence, with characteristic relaxation time ranging from 
1 to 100 µs for aqueous suspension of magnetite particles coated with dextran is 
presented in Fig. 2a. Using equation (4) we assessed from this experimental data that 
a considerable part of particles is not aggregated, with size 10-12 nm, but there also 
are aggregates with size 40-50 nm. As one can see in Fig. 2b the suspension with 
conjugated Hsp70 has narrower distribution of relaxation times then the suspen-
sion without Hsp70. Relaxation time of the electro-optical effect for such system 
increased to 5 ⋅ 10-2 s, thus almost all particles in the suspension are aggregated, 
with aggregate size order of magnitude bigger than the size of individual particles. 
The observed dichroism also was considerably bigger, and the orientation order 
of scattering aggregates was also higher for comparable field strengths then that 
observed in pure SPION suspension. As the size of the aggregates grows, the value 
of polarizability anisotropy of aggregates grows as well.
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Conclusion
Electro-optical study of SPION aqueous suspensions can be used to determine 

the processes of particle aggregation. These suspensions have observable dichroism 
in electric fields. Dichroism magnitude in electric field and its relaxation depend 
on the presence of Hsp70 on the surface of SPIONs.
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Introduction
Role of water molecules in the DNA environment is very important. Water 

interacts with soluted molecules. Just water stabilizes secondary and tertiary 
DNA-structures. It is possible due to its high permittivity, hydration of counter-
ions, decreasing the electrostatic repulsion of phosphate groups and due to the 
hydrophobic interactions. Degree of the DNA hydration defines conformation 
of the macromolecule. At the high relative humidity B-form realizes. Decrease 
of humidity leads to the B-A transition (or B-C depending on DNA type). That 
transition may be caused by increasing of salt content [1]. 

The DNA hydration (G) is the number of water molecules per nucleotide. DNA 
is a polyelectrolyte, and it is highly strong and irregular hydrated. Around the 
DNA there are two discrete layers of water — primary and secondary hydration 
shells. Primary hydration shell consists of 11-12 water molecules per nucleotide 
(in B-form). Water binds with phosphate groups, phosphodiester bonds and with 
bases. At that phosphate groups are hydrated even by humidity less than 65% (5-6 
water molecules per nucleotide) [1, 2].

Fig. 1 [2] shows, that at the relative humidity higher than 80% the primary 
hydration shell fills with water, G=20 and DNA is in the B-form. When G is larger 
than 20, a saturation effect appears and amount of B-DNA is no longer proportional 
to G. DNA helices remain in the B-form. 

Until G=20 (that corresponds to part of B-DNA 92%) linear variations of 
B-DNA amount are observed. By decreasing of the relative humidity or by rising of 

Fig. 1. A-B transition: fraction X
B
 of nucleotides in the B form versus DNA hy-

dration G [2].
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counterions concentration the degree of DNA hydration becomes less and when G 
< 20 the B-A transitions occur. The linear part of the curve intersects the horizontal 
axis at G=4. This value represents the number of water molecules per nucleotide 
in the A-form. Between these two extreme values of G we have the fraction of B- 
and A- DNA [1, 2]. The aim of the present study is to observe the changes in DNA 
hydration and structure during the DNA water-salt solution drop drying.  

Results and Discussion
In our experiment we obtained dry DNA-sodium chloride films. In the present 

study we used chicken erythrocyte DNA. We placed a drop of a sample on the 
surface of IR-spectrometer diamond (Fig. 2). The drop was dried by pure dry air 
flow. In this method the attenuated total reflection is applied [7].

We wanted to observe the dynamics of drop drying. Each spectrum was col-
lected during 13 seconds. In the Fig. 3 the dynamics of DNA-NaCl drop drying 
is shown. In the upper spectrum one can see only water vibrations. Bands, arising 
due to water deformational vibrations disappear during the drying and bands as-
signed with valent vibrations in DNA molecule remain. Intensity and form of the 
wide water band in region 3165-3400 cm-1 change. This band is in particular due 
to symmetrical and antisymmetrical stretching of O-H groups. Also in this region 
there are bands due to symmetrical and antisymmetrical stretching of NH2- and NH- 
groups in nitrogenous bases. Intensity and form of spectrum in this region change 
by decrease of total amount of O-H groups and alterations in ratio of bounded and 
unbounded water molecules. 

During the experiment the humidity of each sample decreased. It is natural that 
in spectra we observe evidences of B-A transition in DNA (Fig. 4). B-A transition 
is accompanied by conformational changing of deoxyribose from 2-endo to 3-endo. 
Distance between neighbour phosphate groups and bases decreases. All that changes 
tell upon IR spectra. There are well known indicative alterations confirming the 
transition [2-6]: the blue-shifts (PO2

-) from 1220 cm-1 to 1240 cm-1, the intensity 
changes of band 1086 — 1096 cm−1 (PO2

−), changes in form of peaks 1695 cm-

1,1605 cm-1 (C=O bases groups). All spectra are related to the band 963 cm-1, which 
is used as internal reference. This band is assigned to the deoxyribose-phosphate 
vibrations and exhibited no significant spectral changes during the experiment.

Fig. 2. Schema of the research fa-
cility ([7],
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Fig. 3. Dynamics of IR spectra during the DNA-NaCl drop drying.

Fig. 4. Indications of B-A transition in DNA.
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In the Fig. 5 the intensity changes of band 3353 cm-1 in films with different 
contents of sodium ions are demonstrated. Amount of associated water in a sample 
can be estimated by intensity of the band. Analysis of the spectra showed that all 
films have only associated water by the end. Time of full dehydration process and 
water amount in a sample depend on content of sodium ions. The higher sodium 
ions content in a film, the longer the ultimate period of drying and the less water 
amount in an entirely dried sample. Enrichment effect is observed — a minimal 
amount of water in a film achieves (Fig. 5). 

Fig. 5. IR spectra intensity changes in films with different contents of Na ions.

Fig. 6. IR spectra of dry films with different ratio [Na]/[P].
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In the Fig. 6 there are spectra of dry films at relative humidity 0%. The inten-
sity of the line around 3335 cm-1 decreases with salt content increasing. It shows 
decreasing of bonded water amount. This fact can be explained by DNA hydra-
tion shell destruction by ions. Obtained results confirm with literature data about 
changes in DNA hydration shell at high contents of metal ions [8]. 

Conclusions
We can make the following conclusions:
a)	 We studied the dynamics of DNA solution drop drying and observed well 

known indicative alterations in IR DNA spectra confirming B-A transition during 
the film dehydration.

b)	 The higher sodium ions content in a film, the longer the ultimate period 
of drying and the less water amount in an entirely dried sample.

c)	 The intensity of line around 3353 cm-1 decreases with salt content increas-
ing. It shows decreasing of bonded water amount. This fact can be explained by 
DNA hydration shell destruction by ions.
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Knowledge of the thermodynamic parameters of the equilibrium DNA com-
plexes with various low molecular weight biological active compounds is neces-
sary for development of new drugs whose mechanism of action is associated with 
the formation of equilibrium complexes. The main methods of determination the 
thermodynamic binding parameters, such as the binding constant and the number 

of binding sites, are spectrophotometry [1] and 
microcalorimetry [2]. However, standard methods 
of titration used in both cases are different, which 
may affect the results.

In this work the interaction of DNA with the 
isoquinoline derivative having indole substitute in 
the first position (Fig. 1), which is similar to the 
well-known drug papaverine, was studied by the 
methods of spectrophotometry, microcalorimetry 
and circular dichroism.
Fig.1. The structure of isoquinoline derivative 
with indole substitute in the first position.

Materials and Methods
High-molecular-weight calf thymus DNA produced by "Sigma" (USA) has 

been used. The concentration of DNA was defined by the method of Spirin [3]. 
Extinction coefficient ε260 = 6400–6700 M-1cm-1. The compounds were synthesized 
in the Research Institute of Hygiene, Occupational Pathology and Human Ecology 
FMBA of Russia [4]. The complexes were prepared by mixing the DNA and ligand 
solutions of the necessary concentrations. The ionic strength of the solution (μ) 
was 0,001 M and subsequently remained unchanged.

The absorption spectra were measured by the double-beam recording spectro-
photometer "Specord UV VIS" and the double-beam spectrophotometer with the 
splitting of beams "Shimadzu UV-1800". The dichrograph from company Jobin, 
Yvon Mark-4 was used to receive the spectra of the circular dichroism. The calori-
metric data were received from the titration microcalorimeter TA Instruments Nano 
ITC 2G at Thermogravimetric and Calorimetric Research Centre St. Petersburg 
State University.
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Results and Discussion
The Fig. 2 shows the curves of spectrophotometric titration (SPT) which was 

made in the region of the ratios of concentrations ligand to DNA (Сligand/CDNA) from 
0,01 to 3,6. We can separate these spectra to the two groups. Each group has its 
own isosbestic point and we conclude that this ligand interacts with DNA by the 
two modes. The first group of the spectra including the spectrum of free ligand 
(Fig. 2, curve 1) corresponds to the condition Cligand/CDNA>0,8. In this region it is the 
equilibrium between free and bound ligand, it allows us to plot the binding curves 
of the ligand and DNA (Fig. 3, curve 1). The second group of the spectra agrees 
0,1<Cligand/CDNA<0,8. It includes the limit spectrum (Fig. 2, curve 2) which doesn’t 
change with further rising of DNA concentration. We can assume that the free 

ligand absents under this 
conditions and it is observed 
the equilibrium between two 
different ways of the interac-
tion [5]. 

Fig.2.  The absorption 
spectra. Cligand =1,93 µM.  
5·10-6M <CDNA <1,3·10-4M. 
The spectrum of free ligand 
(1), the limit spectrum (2).

It allows us to plot the dependence of the ligand binds by the primarily way 
from the total amount of the bound ligand (Fig. 3, curve 2). This plot shows that 
the binding curves are the same until Cligand/CDNA =0,2. It means the binding occurs 
only by the first way in this region. The extinction coefficient of compound equals 
ε416=(7400±300) M-1sm-1.

Fig. 3.The dependences 
of totally binding ligand 
(1) and ligand binds by 
the primary mode (2) 
from Cligand/CDNA.

The circular dichro-
ism spectroscopic titra-
tion was carried out at 
constant concentration 
of DNA (Fig. 4). The 
investigated compound 
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doesn’t have an optical activity. The induced circular dichroism (ICD) of exciton 
type appears at Cligand/CDNA>0.5, this agrees to the secondarily bound ligand.

Fig. 4. The spectrum 
of circular dichroism. 
CDNA=2·10-5M.

T h e  r e s u l t  o f 
isothermal titration 
calor imetry (ITC) 
in the wide range of  
Cligand/CDNA is shown 
in figure 5. As in the 
case of SPT, in the 
resulting thermogram 
we can distinguish two 
regions of concentra-
tion ratios in which 
the different nature 

of the binding enthalpy’s change are observed: the region of the increas-
ing enthalpyat 0,1<Cligand/CDNA<0,8 and the region of the decreasing enthalpy  
(Cligand/CDNA>0,8).

The comparison of the ITC results with the SPT results allows us to make the 
following conclusions: 1) the lack of monotony in the enthalpy change is caused by 
the existence of two binding modes of the ligand with DNA; 2) the increase of the 
enthalpy at 0,2< Сligand/СDNA <0,8 is due to the appearance and the increase of the 
amount of the compound interacting with DNA by the secondary way; 3) at the range 
of Сligand/СDNA<0,8 the free ligand almost absents, this allows to obtain the binding 
enthalpy directly from the experimental data [6]; 4) the decrease of the enthalpy 

is due to saturation of 
the macromolecule 
by the ligand and the 
appearance of the free 
ligand in the solution 
with a further increase 
of Сligand/СDNA.

Fig .  5 .  The  ITС 
t h e r m o g r a m . 
СDNA=2·10-5 М.

The ITC experiment at CDNA =2·10-4 М was carried out for the determining the 
binding enthalpy of the first binding mode (Fig.6). 
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Fig. 6. The ITC 
data.

The use of model-
free method of calcu-
lation for this way of 
interaction gives ΔН 
= (-4,0±0,5) kcal/
mol. In the range of 
Сligand/СDNA the bind-
ing of the ligand goes 

only by the second way. The use of model-free method of calculation for this way 
of interaction gives ΔН = (-10,5±0,5) kcal/mol. 

Conclusion
Under the experimental conditions the investigated compound binds to DNA 

in the two ways. The compound bound by the first way at low degree of saturation 
doesn’t have the optical activity. The extinction coefficient of compound equals 
ε416= (7400±300) M-1sm-1. The binding enthalpy of this way of interaction equals 
ΔН = (-4,0±0,5) kcal/mol. The second binding mode appears at Сligand/СDNA>0,2. 
This kind of interaction causes the ICD of exciton type. The binding enthalpy of 
the secondary way of interaction equals ΔН = (-10,5±0,5) kcal/mol. We can as-
sume that the ligand bound by the secondary way forms the dimers at the surface 
of DNA. The binding constants of interaction of the compound with DNA by the 
both ways are large enough (> 106 M-1) and they can’t be determined by the SPT 
and the ITC methods. 
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Introduction
Understanding the properties of water in biological system is a problem of 

fundamental interest in chemistry and biology. The water-protein interaction is a 
major determinant of protein folding and conformational stability [1, 2].

In the present study the structure of the hydration layer that surrounds the B1 
domain of immunoglobulin-binding protein L (Protein Data Bank code 1HZ6 [3], 
protein sequence is shown in Fig. 1) as well as the dynamics of water molecules in 
the layer has been examined using molecular dynamics computer simulations.

Fig. 1. Sequence of the B1 domain of immunoglobulin-binding protein L from 
Protein Data Bank [4].

Molecular Dynamics simulations details
A model solution of 1 protein molecule (963 atoms) among 7404 water mol-

ecules was considered. Simulations were carried out in an isothermal-isobaric 
ensemble in a cubic periodic cell at 1 atm and 25°C using the MDynaMix package 
[5]. To describe water molecules the SPC/E model [6] was employed. To describe 
water interactions with the protein molecule the force field proposed by Cornell 
et al. [7] was used. The temperature was kept constant by using the Nose-Hoover 
thermostat [8] and pressure was regulated by the Hoover barostat [9]. The equa-
tions of motion were solved using the Verlet algorithm [10] with a time step of 2.0 
fs. The Coulomb interactions were calculated using the Ewald summation method 
[10]. The SHAKE procedure [11] was employed to constrain all the bond lengths. 
The system was equilibrated during a 30 ps run. Further, a 100 ps simulation run 
was performed.
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Results and conclusions
Radial distribution functions, g(r), contain the most basic information about 

the solution microstructure. To describe the water structure in the vicinity of the 
protein surface radial distribution functions (RDFs) between three atom pairs: 
hydrogen atom of amino group (HN) – oxygen atom of water molecule (Ow), 
hydrogen atom attached to alpha carbon (HA) – oxygen atom of water molecule, 
and oxygen atom of carboxyl group (Oc) – oxygen atom of water molecule, were 
calculated for every protein residue. The positions of the first maximum of cor-
responding RDFs are given in Table 1. Eight types of distributions were observed. 
Fig. 2 represents the case of non-hydrated residue then water molecules do not 
come close to the residue surface. Figs. 3-4 represent the examples of partly 
hydrated residue then water comes close to alpha-carbon group only (Fig. 3) or 
both to alpha-carbon and carboxyl groups (Fig. 4). Fig. 5 represents the RDFs for 
completely hydrated residue.

Fig. 2. RDFs between HN-Ow, HA-Ow, and Oc-Ow atom pairs. Residue 6.

Fig. 3. RDFs between HN-Ow, HA-Ow, and Oc-Ow atom pairs. Residue 32.
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Fig. 4. RDFs between HN-Ow, HA-Ow, and Oc-Ow atom pairs. Residue 63.

Fig. 5. RDFs between HN-Ow, HA-Ow, and Oc-Ow atom pairs. Residue 43.
According to simulations results 23 residues (about 37%) are not hydrated at all. 

For the rest of residues the thickness of the protein hydration layer varies from 2.7 
Å in the vicinity of amino group to 3.5 Å near alpha-carbon or carboxyl groups.

To describe water dynamics the residence times of water molecules in the pro-
tein hydration layer were calculated following the standard procedure described 
in [12]. The results are collected in Table 1.
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Table 1. Residence times of water molecules in the protein hydration layer. The 
non-hydrated residues are not included.

Secondary
structure Residue

Type of water environment
HN – Ow HA - Ow Oc - Ow

r(Å) τres(ps) r(Å) τres(ps)_ r(Å) τres(ps)
3 - - - - 2.725 8.93

β-strand 5 2.025 9.54 - - - -
12 - - - - 2.675 8.19

turn 13 1.925 39.35 - - 2.725 4.29
14 - - - - 2.775 4.92
15 - - - - 2.775 6.50
16 - - - - 2.725 26.89

β-strand

17 2.075 5.37 - - 2.725 6.60
18 - - - - 2.725 14.42
19 1.975 7.39 - - 2.675 5.91
20 - - 2.725 5.62 - -
21 1.975 4.45 - - 2.675 5.71
22 - - 2.725 6.96 - -
23 1.975 5.35 - - 2.725 6.90
25 2.075 38.64 2.875 8.85 - -

α-helix

26 1.975 5.28 - - - -
27 1.975 57.37 - - - -
28 - - 2.725 12.70 - -
32 - - 2.625 7.40 - -
36 - - 3.025 9.32 - -
38 - - - - 2.725 5.27
39 - - - - 2.725 8.62
40 - - 2.575 15.48 - -

 
α-helix

42 2.075 3.25 - - 2.725 7.20
43 2.075 55.56 2.825 4.21 2.775 4.73
44 - - 2.725 7.20 2.825 7.28
46 1.975 23.61 3.025 38.54 2.775 17.88

β-strand

47 - - - - 2.775 12.60
48 - - 2.825 9.20 - -
49 1.875 20.28 - - 2.825 7.50
50 - - 2.675 9.04 - -
51 1.825 12.94 - - 2.825 5.8
52 - - 2.825 7.09 - -

3/10 helix
53 2.075 5.08 2.825 7.37 2.725 13.83
54 - - - - 2.725 7.35
55 - - - - 2.725 117.96

β-strand 61 - - - - 2.725 8.04
62 - - - - 2.725 6.65
63 - - 2.725 6.17 2.675 5.46
64 - - 3.025 7.64 - -
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Introduction
Solid hydrogen and deuterium constitute a special type of so-called quantum 

crystals where due to a large zero-point energy tunneling effects play an important 
role in the translational motion of particles. Light atomic impurities like H or D 
introduced into such matrices are able to migrate from one lattice site to another 
by repetition of exchange tunneling reactions, H2+H=H+H2 and D2+D=D+D2 [1]. 
They travel through the crystal until they finally recombine with another H or D 
atom. Similar exchange reactions, H2+D=H+HD and HD+D=H+D2, involving 
both hydrogen isotopes can also take place in mixtures of H2 and D2. They were 
first time observed by Gordon et al [2]. Authors detected a high-rate conversion 
of D atoms into H in a solid mixture of H2 and D2 at temperature of 1.8 K using 
Electron-spin resonance (ESR). 

The exchange reactions of hydrogen isotopes have activation energies of about 
4600 K and proceed at low temperatures exceptionally via tunneling. It is known 
that impurities or other crystal irregularities may violate the resonant tunneling 
mechanism [3]. This diminishes the tunneling probabilities and dramatically reduces 
the efficiency of the exchange reactions. Therefore it is predicted that H and D 
atoms should be very stable at densities of the order of 1020cm-3[4].

In a present work we report on the first experimental observation of the iso-
topic exchange reactions in solid D2 films with a small admixture (about 1%) of 
H2 and HD at temperatures far below 1 K. Efficient conversion of D atoms into H 
was observed in the course of measurement. This resulted in creating high densi-
ties of H atoms which remained peculiarly stable towards recombination up to 
temperatures of a few Kelvin where the film sublimation became a major factor 
of losing the signal.

Experimental Setup
Experiments were performed in the sample cell (SC) shown in Fig. 1 [5]. It 

contains a 128 GHz Fabry-Perot type ESR resonator and two molecular sources 
for performing H2 and/or D2 coating. The SC is thermally anchored to the mixing 
chamber of an Oxford 2000 dilution refrigerator and situated at the center of a 4.6 T 
superconducting magnet. The main methods of investigation are Electron-spin 
resonance and mass measurement by a quartz-crystal microbalance (QM) which 
also plays a role of a flat mirror of the ESR resonator. 

The open design of the FPR provides an opportunity to arrange a miniature 
helical resonator near the QM without distorting the mm-wave field in the ESR 
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cavity. The helical resonator (HNMR) 
was tuned to 910 MHz and used for excit-
ing an NMR transition of the H atoms. 
Moreover, it was also utilized to run rf 
discharge in the SC for dissociating a 
fraction of H2 and D2 molecules in the 
film into atoms by electron impact. 

The samples were created in two stag-
es. First a D2 film was deposited onto the 
QM which was kept below 1 K to assure 
smooth and homogeneous hydrogen coat-
ing [6]. Then rf discharge was activated 
in the sample cell to accumulate unpaired 
H and D atoms in the film.

Results and Discussion
Accumulation was 

run for several hours 
for reaching the high-
est densities of D at-
oms, about 3·1019 cm-3 

(Fig. 2). Afterwards 
the discharge was 
s t o p p e d  a n d  t h e 
sample cell tempera-
ture was stabilized at 
300 mK. The H con-
centration obtained 
during accumulation 
is spectacularly large 
assuming that the dis-

sociation probability is equal for D2, H2 and HD. This means that about 99% of H 
atoms were created in the course of the exchange reactions.

An increase of H densities and decrease of D densities after stopping the ac-
cumulation clearly identifies the isotopic exchange reactions. The steady state 
concentrations of H and D of 3·1019 cm-3 and 1.4·1019 cm-3, respectively, were 
reached after time period of 120 hours. We found that the isotopic exchange reac-
tions proceed with a high enough rate down to temperatures of 80 mK which is a 
limit for our dilution refrigerator. Unfortunately we were unable to estimate the 
reactions’ rates due to uncertainty in the H2 and HD content in our film.

The following studies showed that H atoms produced in the exchange reac-
tions remained very stable towards recombination in a wide temperature range. It 
can be explained by the fact that the H atoms created from conversion of D atoms 

Fig. 1. Schematic drawing of the sam-
ple cell.

Fig. 2. Evolution of atomic hydrogen and deuterium densi-
ties, recorded during the RF dissociation and subsequent 
exchange reactions at T=300 mK.
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become immobilized by a D2 surrounding [2]. The reverse exchange reaction, 
H+D2=D+HD, involving H and D2 is slightly endothermic (about 500 K) due to 
the difference in the zero-point energies of the reactants and products and cannot 
proceed at low temperatures.

The sample sta-
bility at 300 mK dur-
ing 2 weeks of mea-
surement is shown in 
Fig. 3. The recom-
bination remained 
vanishingly small for 
both H and D atoms 
at this temperature. 
Such behavior is in a 
big contrast to a reg-
ular H in H2 samples 
[7] of the same H atom density. 

High stability of H atoms was also observed at higher temperatures. The re-
combination of H atoms in H2 or D2 solids is known to be a two-body process and 
can be described by a second order kinetic equation. 

22 r
dn K n
dt

= −

Hence an inverse den-
sity, n-1, should have a 
linear dependence on time 
with a slope of twice the re-
combination constant, 2 Kr. 
The H atom decay in a tem-
perature range of 1-2.5 K 
is shown in Fig.  4. The 
recombination is almost 
temperature independent 
within this range unlike 
for H atoms in H2. An esti-
mate of the recombination 
constant for H in D2 at 1 K 
gives Kr of 2·10-30 cm3/s which is about 6 orders of magnitude smaller than that for 
H in H2 (2·10-24 cm3/s) measured by Ahokas et al [7]. It is also worth to emphasize 
that the ratio between H and D atoms was 7:3 ± 20% during recombination at 
temperatures up to 4K. This allows us to conclude that the loss rate for D atoms 
was about 50% smaller than that for H atoms. There are two possible sources of 
losing D atoms, namely their recombination and the exchange reaction with the 
remnants of HD and H2 which converts them into H. If we assume that the main 

Fig. 3. H (circles) and D (squares) atom stability at tem-
perature of 300 mK.

Fig. 4. Time evolution of inverse density of H atoms 
at different temperatures: rounds-1K, diamonds-1.5 K, 
squares-2 K, pentagons-2.5 K.
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source is the D-to-H conversion, the recombination constant Kr for H should be 
about 30% larger than the estimated value. 

The sample remained stable even at temperatures higher than 2.5 K. But at these 
temperatures film sublimation becomes an additional factor of losing the signal.

Conclusion
The exchange reactions of hydrogen isotopes were for the first time observed at 

temperatures far below 1 K. We found out that these reactions efficiently convert 
D atoms into H at temperatures down to 80 mK which is a limit for our dilution 
refrigerator. The H atoms generated in the exchange reactions become localized 
by the D2 surrounding which prevents their recombination in a wide temperature 
range. 
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